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Abstract 

Component’s selection and perfect level of 
redundancy selection for maximizing system 
reliability is main purpose of the redundancy 
allocation problem (RAP). In this paper we are 
interested to solve a complex bridge system 
reliability under some constraints of design. The 
RAP is designed in crisp environment as well as in 
imprecise environments to clarify the uncertainty of 
the model. The decision parameters are made 
imprecise using triangular fuzzy as well as 
triangular intuitionistic fuzzy numbers. Graded 
mean integration approach of crispification is used 
to crispify the different parameters of constrained 
fuzzy and intuitionistic fuzzy optimization 
problems. The constrained optimization problem is 
converted into unconstrained one using Big-M 
penalty approach. An advanced genetic algorithm 
(GA) is applied to solve the reliability optimization 
problem in precise and imprecise environments. At 
the end of this study a numerical example is solved 
and the outcomes are analyzed graphically with 
respect to the GA parameters. 

Keywords: Redundancy allocation problem 
(RAP), Advanced genetic algorithm, Triangular 
fuzzy number (TFN), Triangular intuitionistic fuzzy 
number (TIFN), Graded mean integration value 
(GMIV). 

1. Introduction  

 The probability of successful operation of a device 
or a system in a specified life time under some 
predetermined restrictions is called the reliability of 
that system. Reliability optimization is an 
important branch of advanced operations research. 
The system reliability can be enhanced in several 
ways among them two important ways are (i) 
increment of component reliability and (ii) keeping 
redundant units parallelly in each subsystem. In 
case of parallel redundancy, the optimization 
problem is known as redundancy allocation 
problem (RAP). The costs, volumes, components’ 
reliabilities, weights etc. are known to the  
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researchers in RAP type of problems. The main 
purpose RAP type of problems is to maximize the 
system reliability under several restrictions by 
finding optimum number of redundant 
components, situated actively in each subsystem. 

In this paper we have taken redundancy allocation 
problems due to its NP-hard nature. Kuo and 
Prasad provided an overview on reliability 
optimization problem [15]. An integer 
programming problem in association with a reliable 
system was solved by Mishra and Sharma [20].  
Tillman et al. solved a redundancy allocation 
problem in their famous article [27]. The problems 
which are very hard to solve on employing the 
existing optimization techniques is referred as NP-
hard problems [2,8]. Mahapatra and company 
employed an optimization technique to solve a 
production-inventory system [17]. Various types of 
reliability optimization problems are documented 
in the literature [1,4]. Mahato et al. and Sahoo et al. 
computed the system reliability of their considered 
reliability optimization models under different 
uncertain atmospheres [18,23-24]. Differently 
designed reliability systems were optimized by 
Tillman et al. and Tzafestas et al. in their respective 
studies [28, 29]. Paramanik et al. solved a 
complicated system using heuristic algorithm for 
optimizing system reliability in imprecise 
environment [32]. 

Reliability optimization problem deals with non-
linear objective function. These problems are of the 
type integer or mixed integer or combination of 
integer and mixed integer. As a result, heuristic and 
evolutionary algorithms work efficiently for solving 
these types of optimization problems. These 
algorithms do not depend on the continuity or 
discreteness of the searching space. Various types of 
deterministic approach such as heuristic methods 
[16,22], reduced gradient technique [10,11], 
surrogate-constraints algorithm [9,21], branch and 
bound method [14,26], dynamic programming 
method, linear programming approach were 
employed to obtain the optimum of differently 
designed reliable systems. Furthermore, differently 
coded evolutionary algorithms [3,5] and its’ 
modified forms [12-13,25] were used to solve 
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redundancy allocation problems under several 
constraints.  

Most of the researches on optimization problems 
tried to solve the reliability optimization problems 
with respect to the fixed values of the control 
parameters. But it is not always good to consider the 
control parameters as crisp valued due the diversity 
nature of the problems. To get rid of this situation 
we can consider the control parameters as 
uncertain numbers. Very few works are done on 
imprecise reliability optimization models in the 
literature. However, some of the researchers 
employed interval, stochastic, fuzzy, stochastic- 
fuzzy numbers to optimize reliable systems in 
imprecise environments. The generalization of 
crisp number is done by fuzzy number whereas the 
generalization of fuzzy number is done by 
intuitionistic fuzzy number. The fuzzy numbers deal 
with membership value only. But   intuitionistic 
fuzzy numbers deal with both membership and 
non-membership functions. As a result, the 
problem becomes more robust in intuitionistic 
fuzzy environment. Thus, to investigate the 
optimality of the reliable system impreciseness can 
be done using intuitionistic fuzzy numbers. 
According to our knowledge, very few of them tried 
to solve the reliability optimization using 
intuitionistic fuzzy atmospheres. Seikh et al. (2012) 
explain the generalization of triangular fuzzy 
numbers in intuitionistic fuzzy environment [33]. 
In the next year they included a note on triangular 
intuitionistic fuzzy environment [34].  The 
researchers employed IWO, PSO, QPSO, ABC, GA 
[6] etc. as evolutionary and heuristic algorithms to 
handle the imprecise reliability optimization 
problems. As a result, we are interested to 
implement fuzzy as well as intuitionistic fuzzy 
numbers to frame the optimization problems using 
newly coded evolutionary algorithm. 

In this paper, we have considered mixed integer 
non-linear programming problems in which 
component reliabilities of each subsystem are crisp, 
fuzzy and intuitionistic fuzzy valued respectively. 
Graded mean integration technique [30] is applied 
to obtain the corresponding crispified models. After 
that an advanced GA in combination of Big-M 
penalty technique is used to tackle our proposed 
problems. 

The remainder of this article is arranged as follows: 
Section 2 and its subsections contain some 
preliminary definitions of fuzzy and intuitionistic 
fuzzy numbers and its’ defuzzification techniques. 
Section 3 included the needed assumptions and 
notation that have been utilized throughout the 
paper by creating a separate subsection. The RAP is 
formulated in crisp, fuzzy and intuitionistic fuzzy 
environments using different subsections of the 
section 3 and a complex system with its 
configuration is shown in this section. The 

constraint handling approach and the solution 
methodology are kept in section 4. The 
computational procedure of the proposed GA is 
described in subsection 4.1 with the help of a flow 
chart. Results and discussions of the numerical 
example are kept in subsection 5.1 and the 
sensitivity is analyzed in subsection 5.2 of the 
section 5. At last conclusion of the entire work with 
some future scopes is drawn in section 6. 

2. Preliminaries 

2.1 Fuzzy Number: A convex and normal fuzzy 
set [31] is defined as fuzzy number i.e., a fuzzy 
number is a special kind of fuzzy set. 

2.2 Intuitionistic fuzzy number: An 
intuitionistic fuzzy number [33] 𝐵𝐵� P

' is an 
intuitionistic fuzzy set such that  

a)  it is contained in the real line; 

b) it is normal i.e., there is at least one 𝑦𝑦0 ∈ ℝ 
for which 𝜇𝜇𝐵𝐵′�(𝑦𝑦0) = 1 (and 𝜈𝜈𝐵𝐵′�(𝑦𝑦0) = 0); 

c) 𝜇𝜇𝐵𝐵′�(𝜆𝜆𝑦𝑦1 + (1 − 𝜆𝜆)𝑦𝑦2) ≥
min (𝜇𝜇𝐵𝐵′�(𝑦𝑦1), 𝜇𝜇𝐵𝐵′�(𝑦𝑦2))∀𝑦𝑦1,𝑦𝑦2 ∈ ℝ, 𝜆𝜆 ∈ [0,1] 
that means it is convex for the membership 
function   𝜇𝜇𝐵𝐵′�(𝑦𝑦);  

d) 𝜈𝜈𝐵𝐵′�(𝑦𝑦) 𝜈𝜈𝐵𝐵′�(𝜆𝜆𝑦𝑦1 + (1 − 𝜆𝜆)𝑦𝑦2 ≤
max �𝜈𝜈𝐵𝐵′�(𝑦𝑦1), 𝜈𝜈𝐵𝐵′�(𝑦𝑦2)� ∀ 𝑦𝑦1,𝑦𝑦2 ∈ ℝ, 𝜆𝜆 ∈ [0,1] 
that means it is concave for non-
membership function. 

 

 

2.3 Triangular Intuitionistic Fuzzy Number 
(TIFN)  

An intuitionistic fuzzy set is said to be triangular 
intuitionistic fuzzy number (TIFN) 𝐵𝐵�𝑖𝑖 if the 
membership function (𝜇𝜇𝐵𝐵�𝑖𝑖(𝑦𝑦)) and non-
membership function (𝜈𝜈𝐵𝐵�𝑖𝑖(𝑦𝑦)) are as follows: 

O 

0.5 

1 
𝜈𝜈𝐵𝐵′� (𝑦𝑦) 

𝜇𝜇𝐵𝐵′� (𝑦𝑦) 

FIG.1: INTUITIONISTIC FUZZY NUMBER (𝐵𝐵′� ) 
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𝜇𝜇𝐵𝐵�𝑖𝑖(𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧
𝑦𝑦 − 𝑒𝑒1
𝑒𝑒2 − 𝑒𝑒1

 , for 𝑒𝑒1 ≤ 𝑦𝑦 ≤ 𝑒𝑒2
𝑒𝑒3 − 𝑦𝑦
𝑒𝑒3 − 𝑒𝑒2

, for 𝑒𝑒2 ≤ 𝑦𝑦 ≤ 𝑒𝑒3

0, otherwise

 

 𝜈𝜈𝐵𝐵�𝑖𝑖(𝑦𝑦) =

⎩
⎨

⎧
𝑒𝑒2−𝑦𝑦
𝑒𝑒2−𝑒𝑒1

′ , for 𝑒𝑒1′ ≤ 𝑦𝑦 ≤ 𝑒𝑒2
𝑦𝑦−𝑒𝑒2
𝑒𝑒3
′−𝑒𝑒2

, for 𝑒𝑒2 ≤ 𝑦𝑦 ≤ 𝑒𝑒3′

1, otherwise

 

where,  𝑒𝑒1′ ≤ 𝑒𝑒1 ≤ 𝑒𝑒2 ≤ 𝑒𝑒3 ≤ 𝑒𝑒3′  and for  𝜇𝜇𝐵𝐵�𝑖𝑖(𝑦𝑦) =
𝜈𝜈𝐵𝐵�𝑖𝑖(𝑦𝑦),  𝜇𝜇𝐵𝐵�𝑖𝑖(𝑦𝑦),𝜈𝜈𝐵𝐵�𝑖𝑖(𝑦𝑦) ≤ 1

2
  ∀ 𝑦𝑦 ∈ 𝑅𝑅 . 

 Triangular intuitionistic fuzzy number [34] is 
written as  (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3 ; 𝑒𝑒1′ , 𝑒𝑒2, 𝑒𝑒3′). 

 

2.3.1 Transformation rule: TIFN, 𝐵𝐵�𝑖𝑖 =
(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3 ; 𝑒𝑒1′ , 𝑒𝑒2, 𝑒𝑒3′) reduces to 

(i) a triangular fuzzy number (TFN), 𝐴̃𝐴 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3) 
if  𝑒𝑒1 = 𝑒𝑒1′ , 𝑒𝑒3 = 𝑒𝑒3′  and 𝜈𝜈𝐵𝐵�𝑖𝑖(𝑧𝑧) = 1 − 𝜇𝜇𝐵𝐵�𝑖𝑖(𝑧𝑧) 

(ii) real interval [𝑒𝑒1, 𝑒𝑒3] if  𝑒𝑒1′ = 𝑒𝑒1and 𝑒𝑒3 = 𝑒𝑒3′ . 

(iii) a real number ‘e’ if  𝑒𝑒1′ = 𝑒𝑒1 = 𝑒𝑒2 = 𝑒𝑒3 = 𝑒𝑒3′ = 𝑒𝑒. 

2.4 Graded mean integration method for 
triangular fuzzy number (TFN) 

According to [30] graded mean integration formula 
for the triangular fuzzy number (TFN) 𝐵𝐵� =
(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3) is given by  𝐺𝐺�𝐵𝐵�� = 𝑒𝑒1+2𝑒𝑒2+𝑒𝑒3

4
.   

2.4.1 Graded mean integration method for 
TIFN: Let 𝐵𝐵�𝑖𝑖 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3; 𝑒𝑒1′ , 𝑒𝑒2, 𝑒𝑒3′) be triangular 
intuitionistic fuzzy number. Then graded mean 
integration formula for membership and non- 
membership functions are given by 

𝐺𝐺𝜇𝜇�𝐵𝐵�𝑖𝑖� = 𝑒𝑒1+2𝑒𝑒2+𝑒𝑒3
4

 ,          𝐺𝐺𝜈𝜈�𝐵𝐵�𝑖𝑖� = 𝑒𝑒1
′+2𝑒𝑒2+𝑒𝑒3

′

4
. 

Now, taking the mean of 𝐺𝐺𝜇𝜇�𝐵𝐵�𝑖𝑖� and 𝐺𝐺𝜈𝜈�𝐵𝐵�𝑖𝑖�, the 
graded mean integration formula of 𝐵𝐵�𝑖𝑖 becomes as 
follows:   

𝐺𝐺𝑎𝑎𝑎𝑎�𝐵𝐵�𝑖𝑖� = 𝑒𝑒1+2𝑒𝑒2+𝑒𝑒3+𝑒𝑒1
′+2𝑒𝑒2+𝑒𝑒3

′

8
. 

 

3. Model Formulation 

3.1 Assumptions and notation 

Throughout the paper, the following assumptions 
and notation are employed. 

3.1.1 Assumptions  

  Component reliabilities are taken 
as intuitionistic fuzzy number. 

 The probability of failure of any 
component does not depend on 
the failure of other components. 

 All the control parameters and 
cost coefficients are taken as 
intuitionistic fuzzy number. 

3.1.2 Notation Symbols Descriptions                                 

m subsystems’ number 

𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑚𝑚)         redundancy vector 

𝑡𝑡𝑖𝑖 , 𝑡𝑡𝚤𝚤� reliability of ith crisp, 
intuitionistic fuzzy component  

𝑡𝑡 = (𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑚𝑚) system’s reliability vector  

𝑍𝑍𝑆𝑆(𝑧𝑧),𝑍𝑍�𝑆𝑆(𝑧𝑧) system reliability in crisp and 
intuitionistic fuzzy 
environment     

𝑔𝑔𝑗𝑗(𝑧𝑧),𝑔𝑔�𝑗𝑗(𝑧𝑧) jth constraint functions (j= 1, 2, 
…, n) in crisp and intuitionistic 
fuzzy environment  

𝑝𝑝𝑖𝑖 , 𝑝𝑝�𝑖𝑖 volume of ith component in 
crisp and intuitionistic fuzzy 
cases  

𝑞𝑞𝑖𝑖 , 𝑞𝑞�𝑖𝑖 cost of ith component in crisp 
and intuitionistic fuzzy cases  

𝑟𝑟𝑖𝑖 , 𝑟̃𝑟𝑖𝑖 weight of ith component in 
crisp and intuitionistic fuzzy 
cases 

𝑃𝑃,𝑃𝑃� upper limit of volume 
constraint in crisp and 
intuitionistic fuzzy 
environments  

𝑄𝑄,𝑄𝑄�  upper limit of cost constraint 
in crisp and intuitionistic fuzzy 
environments  

FIG. 2: TRIANGULAR INTUITIONISTIC FUZZY NUMBER 
(TIFN) 

 
 

𝜇𝜇𝐵𝐵′� (𝑦𝑦) 

 𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒1′  𝑒𝑒3′  

𝑣𝑣𝐵𝐵′� (𝑦𝑦) 

Y 



 
Optimization of imprecise redundancy allocation problems for a complicated system using soft computing technique 

 
61  J. Sci. Enq., 2022, 2(9) 

𝑅𝑅,𝑅𝑅� upper limit of weight 
constraint in crisp and 
intuitionistic fuzzy 
environments  

𝑏𝑏𝑗𝑗 , 𝑏𝑏�𝑗𝑗 availability of jth resource in 
crisp and intuitionistic fuzzy 
cases  

𝛳𝛳 region of feasibility 

 3.2 Crisp Model 

Maximize 
𝑍𝑍𝑆𝑆(𝑧𝑧)                                                                                    (𝐼𝐼) 

subject to 𝑔𝑔𝑗𝑗(𝑧𝑧) − 𝑏𝑏𝑗𝑗 ≤ 0, 𝑗𝑗 = 1,2, … ,𝑛𝑛 

where,  𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑚𝑚), 1 ≤ 𝐿𝐿𝑖𝑖 ≤ 𝑧𝑧𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖 , 𝑧𝑧𝑖𝑖is 
integer, i=1, 2, …, m, 𝑏𝑏𝑗𝑗 is the j-th variable resource, 
j=1, 2, …, n. 

 𝑍𝑍𝑆𝑆(𝑧𝑧), 𝑔𝑔𝑗𝑗(𝑧𝑧) and 𝑏𝑏𝑗𝑗 are the respective reliability of 
the system, constraint at j-th position and resource 
at j-th position.  

3.3 Fuzzy Model 

Maximize
 𝑍̂𝑍𝑆𝑆(𝑧𝑧)                                                                                   (𝐼𝐼𝐼𝐼) 

subject to 𝑔𝑔�𝑗𝑗(𝑧𝑧) − 𝑏𝑏�𝑗𝑗 ≤ 0, 𝑗𝑗 = 1,2, … ,𝑛𝑛 

where,  𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑚𝑚), 1 ≤ 𝐿𝐿𝑖𝑖 ≤ 𝑧𝑧𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖 , 𝑧𝑧𝑖𝑖  is 
integer i=1, 2, …, m; 𝑏𝑏𝑗𝑗 is the j-th variable resource, 
j=1, 2, …, n. 

 𝑍̂𝑍𝑆𝑆(𝑧𝑧), 𝑔𝑔�𝑗𝑗(𝑧𝑧) and 𝑏𝑏�𝑗𝑗 are the respective fuzzy 
reliability of the system, fuzzy constraint at j-th 
position and fuzzy resource at j-th position.   

 3.4 Intuitionistic Fuzzy Model 

 
Maximize 𝑍𝑍�𝑆𝑆(𝑧𝑧)                                                                (𝐼𝐼𝐼𝐼𝐼𝐼) 

subject to 𝑔𝑔�𝑗𝑗(𝑧𝑧) − 𝑏𝑏�𝑗𝑗 ≤ 0, 𝑗𝑗 = 1,2, … ,𝑛𝑛 

where,  𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑚𝑚), 1 ≤ 𝐿𝐿𝑖𝑖 ≤ 𝑧𝑧𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖 , 𝑧𝑧𝑖𝑖  is 
integer i=1, 2, …, m; 𝑏𝑏𝑗𝑗 is the j-th variable resource, 
j=1, 2, …, n. 

 𝑍𝑍�𝑆𝑆(𝑧𝑧), 𝑔𝑔�𝑗𝑗(𝑧𝑧) and 𝑏𝑏�𝑗𝑗 are the respective fuzzy 
reliability of the system, fuzzy constraint at j-th 
position and fuzzy resource at j-th position.    

3.5 Complicated/Complex System 

A system, consisting of five subsystems (m=5) with 
three nonlinear and non-separable constraints 
(n=3) is being considered. This complicated system 

is being shown in Fig.3.The overall system 
reliability 𝑍𝑍𝑆𝑆(𝑧𝑧) is given below:   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑆𝑆(𝑧𝑧) = (1 − 𝑍𝑍5(𝑧𝑧))[1 − (1
− 𝑍𝑍1(𝑧𝑧1)𝑍𝑍2(𝑧𝑧2))(1 − 𝑍𝑍3(𝑧𝑧3)𝑍𝑍4(𝑧𝑧4))
+ 𝑍𝑍5(𝑧𝑧5)(1 − (1 − 𝑍𝑍1(𝑧𝑧1))(1
− 𝑍𝑍3(𝑧𝑧)))(1
− (1 − 𝑍𝑍2(𝑧𝑧2))(1 − 𝑍𝑍4(𝑧𝑧)))] 

where, 𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧5). 

 

Fig. 3: Complex bridge system 

4. Solution Procedure 

In this paper, we looked at a constrained 
optimization problem. So, in order to tackle this 
problem, we must first deal with the limits. There 
are various constraint handling approaches. The 
Big-M penalty function technique [8] is proven to 
be very successful among them. For each of the 
infeasible solutions, a huge positive integer M is 
assigned to the goal value for minimizing the 
problem. For a maximization problem -M is set 
instead of M. Equation (IV) shows the 
implementation of Big-M Penalty technique for 
maximization problem.  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝐺𝐺𝑎𝑎𝑎𝑎�𝑍𝑍�𝑆𝑆(𝑧𝑧)� = �𝐺𝐺𝑎𝑎𝑎𝑎�𝑍𝑍
�𝑆𝑆(𝑧𝑧)� 𝑖𝑖𝑖𝑖 𝑧𝑧 ∈ 𝛳𝛳

−𝑀𝑀    𝑖𝑖𝑖𝑖 𝑧𝑧 ∉ 𝛳𝛳
                                                                                     

(IV)  

where, 𝛳𝛳 = �𝑧𝑧:𝐺𝐺𝑎𝑎𝑎𝑎(𝑔𝑔�𝑗𝑗(𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑚𝑚)) ≤ 𝐺𝐺𝑎𝑎𝑎𝑎(𝑏𝑏�𝑗𝑗), 𝑗𝑗 =
1,2, … ,𝑛𝑛} represents the region of feasibility; 𝐺𝐺𝑎𝑎𝑎𝑎  (I) 
is the Graded mean integration value of the 
intuitionistic fuzzy number I.  

The problem (IV) is an optimization problem with 
discrete variables that is very nonlinear. As a result, 
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solving this problem analytically has grown 
difficult. Furthermore, the gradient-based method 
or the indirect search approach cannot be used 
since these methods require the decision variables 
to be continuous [16]. Therefore, heuristic/meta-
heuristic algorithm becomes the necessary tool to 
obtain the solution of the problem.  

To tackle the optimization problem in this paper, 
actual coded elitist GA is employed. 

4.1 Genetic Algorithm  

GA [7,19] is a stochastic search and optimization 
strategy based on natural genetics and the 
evolutionary principle of “Survival of the Fittest” 
that follows two simple principles: 

a) “If an above-average offspring is formed by 
genetic processing, it will survive longer than an 
average individual and hence have more 
opportunity to have kids with some of its qualities 
than an ordinary individual.” 

b) “However, if a below-average child is produced, 
it does not survive and is thus eliminated from the 
population.” 

 Some of GA's more well-known features are as 
follows: 

(i) GA searches the coding of a solution set rather 
than the solution itself. 

(ii) Rather than using derivatives or another 
auxiliary knowledge, GA uses payoff information. 

(iii) GA relies on reward information rather than 
derivatives or other auxiliary data. 

(iv) GA uses stochastic transformation rules rather 
than deterministic transformation procedures. 

Figure 4 shows a block diagram of real coded elitist 
GA. 

Fig. 4: Block diagram of proposed GA 

The value of the objective function corresponds to 
the chromosome’s fitness value. The approach uses 
tournament selection with two team, intermediate 
crossover, and mutation in one neighborhood 
because the variables are discrete. When the 
algorithm reaches a predetermined number of 
generations, it will be terminated.  

5. Numerical Illustrations  

Example: The redundancy allocation problem 
with respect to crisp atmosphere is as follows: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑆𝑆(𝑧𝑧) =  𝑍𝑍5(𝑧𝑧5)(1 − (1 − 𝑍𝑍1(𝑧𝑧1))(1 −
𝑍𝑍3(𝑧𝑧)))(1 − (1 − 𝑍𝑍2(𝑧𝑧2))(1 −
                                           𝑍𝑍4(𝑧𝑧))) + (1 − 𝑍𝑍5(𝑧𝑧))[1 −
(1 − 𝑍𝑍1(𝑧𝑧1)𝑍𝑍2(𝑧𝑧2))(1 − 𝑍𝑍3(𝑧𝑧3)𝑍𝑍4(𝑧𝑧4))] 

subject to 

𝑝𝑝1 exp �
𝑧𝑧1
2
� 𝑧𝑧2 + 𝑝𝑝2𝑧𝑧3 + 𝑝𝑝3𝑧𝑧42 + 𝑝𝑝5𝑧𝑧5 ≤ 𝑃𝑃 

𝑞𝑞1 exp �
𝑧𝑧1
2
� + 𝑞𝑞2 exp(𝑧𝑧2) + 𝑞𝑞3𝑧𝑧32

+ 𝑞𝑞4 �𝑧𝑧42 + exp �
𝑧𝑧4
4
��

+ 𝑞𝑞5 exp �
𝑧𝑧5
4
� ≤ 𝑄𝑄 
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𝑟𝑟2(𝑧𝑧22 + exp(𝑧𝑧2)) + 𝑟𝑟3𝑧𝑧3 exp �
𝑧𝑧3
4
� + 𝑟𝑟4𝑧𝑧1𝑧𝑧42 + 𝑟𝑟5𝑧𝑧53

≤ 𝑅𝑅 

                             (1,1,1,1,1) ≤ (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧5) ≤
(10,10,10,10,10)  

where, 𝑍𝑍1(𝑧𝑧1) = 𝑡𝑡1, 

𝑍𝑍2(𝑧𝑧2) = 1 − (1 − 𝑡𝑡2)𝑧𝑧2, 

𝑍𝑍3(𝑧𝑧3) = ∑ �𝑧𝑧3 + 1
𝑘𝑘 �𝑧𝑧3+1

2 (𝑡𝑡3)𝑘𝑘(𝑡𝑡4)𝑧𝑧3+1−𝑘𝑘, 

𝑍𝑍4(𝑧𝑧4) = 1 − (1 − 𝑡𝑡5)𝑧𝑧4, 

𝑍𝑍5(𝑧𝑧5) = 1 − (1 − 𝑡𝑡6)𝑧𝑧5. 

The crisp, fuzzy and intuitionistic fuzzy 
representations of the control parameters are kept 
in Table 1, Table 2 and Table 3 respectively.  

Table 1: Data for crisp model (L. Sahoo 2017)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: TFN data and crispified value for 
problem (II)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 
parameters 

Values in Crisp 
environment 

𝑝𝑝1 10 
𝑝𝑝2 20 
𝑝𝑝3 3 
𝑝𝑝5 8 
𝑞𝑞1 10 
𝑞𝑞2 4 
𝑞𝑞3 2 
𝑞𝑞4 6 
𝑞𝑞5 7 
𝑟𝑟2 12 
𝑟𝑟3 5 
𝑟𝑟4 3 
𝑟𝑟5 2 
P 200 
Q 310 
R 520 
𝑡𝑡1 0.975 
𝑡𝑡2 0.75 
𝑡𝑡3 0.88 
𝑡𝑡4 0.12 
𝑡𝑡5 0.70 
𝑡𝑡6 0.85 

Control 
parameters 

TFN 
representation 

GMIV of 
TFN 

 
𝑝̂𝑝1 (7,10,11) 9.5 
𝑝̂𝑝2 (18,20,21) 19.75 
𝑝̂𝑝3 (1,3,4) 2.75 
𝑝̂𝑝5 (7,8,10) 8.25 
𝑞𝑞�1 (8,10,11) 9.75 
𝑞𝑞�2 (2,4,5) 3.75 
𝑞𝑞�3 (1,2,4) 2.75 
𝑞𝑞�4 (5.5,6,7) 6.125 
𝑞𝑞�5 (6.5,7,8) 7.125 
𝑟̂𝑟2 (9,12,13) 11.5 
𝑟̂𝑟3 (3,5,5.5) 4.625 
𝑟̂𝑟4 (1.5,3,4.0) 2.875 
𝑟̂𝑟5 (1.5,2,3) 2.125 
𝑃𝑃� (190,200,205) 198.75 
𝑄𝑄�  (305,310,312) 309.25 
𝑅𝑅�  (515,520,523) 519.5 
𝑡̂𝑡1 (0.90,0.95,0.97) 0.9425 
𝑡̂𝑡2 (0.70,0.75,0.78) 0.745 
𝑡̂𝑡3 (0.84,0.88,0.90) 0.875 
𝑡̂𝑡4 (0.10,0.12,0.15) 0.1225 
𝑡̂𝑡5 (0.65,0.70,0.74) 0.6975 
𝑡̂𝑡6 (0.81,0.85,0.87) 0.845 
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Table 3: TIFN data and its crispified value 
for problem (III)  

5.1 Results and Discussion 

In a WINDOWS environment, the real programmed 
genetic algorithm is implemented in C. For each of 
the environments, 30 independent runs are 
considered in order to obtain maximum system 
reliability of the considered problem. Population 
size (200), maximum number of generations (200), 
Probability of crossover (0.85) and probability of 
mutation (0.15) are the GA parameters, employed 
in this study. 

All of these criteria have been taken into account 
based on [18]. 

Table 4 shows a comparison of computational 
outcomes for crisp, fuzzy and intuitionistic fuzzy 
atmospheres. 

 

 

 

 

 

Atmosphere Vector of 
redundancy 

(𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4, 𝑧𝑧5) 

System 
reliability 

(ZS) 

Elapsed time 
of 

computation 

Crisp (1,3,4,3,2) 0.9999845 0.30 seconds 

Fuzzy (1,3,4,3,2) 0.99999634 0.0695 
seconds 

Intuitionistic 
fuzzy 

(1,3,4,3,2) 0.99999821 0.07 seconds 

Table 4: Comparison of results in crisp, fuzzy and 
intuitionistic fuzzy atmospheres 

 

Fig. 5: Behavior of system reliability w. r. t. 
population size for TIFN case 

 

Fig. 6: Behavior of system reliability w.r.t. 
maximum number of generations for TIFN case 

 

Fig. 7: Behavior of system reliability w.r.t. 
probability of crossover for TIFN case 
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100%

1 2 3 4 5 6 7 8 9

R

Prob.
Cross
over

Control 
parameters 

TIFN representation GMIV 
of 

TIFN 
𝑝𝑝�1 (7,10,12;6,10,13) 7.75 
𝑝𝑝�2 (18,20,22;16,20,24) 18 
𝑝𝑝�3 (2,3,4;1.5,3,5) 2.3125 
𝑝𝑝�5 (7,8,10;6,8,11.5) 7.3125 
𝑞𝑞�1 (9,10,11;7.5,10,12.5) 8.75 
𝑞𝑞�2 (3,4,5;2.5,4,6) 4.875 
𝑞𝑞�3 (1,2,3;0.5,2,3.5) 4.0625 
𝑞𝑞�4 (5.5,6,7;4,6,8) 5.0625 
𝑞𝑞�5 (6.5,7,8;5,7,9) 6.0625 
𝑟̃𝑟2 (10,12,14;9,12,15) 10.5 
𝑟̃𝑟3 (3,5,5.5;2.5,5,6.5) 3.4375 
𝑟̃𝑟4 (1.5,3,4.0;1,3,4.5) 1.875 
𝑟̃𝑟5 (1,2,3;0.7,2,3.5) 1.375 
𝑃𝑃� (190,200,205;188,200,208) 192.875 
𝑄𝑄�  (305,310,312;299,310,316) 303.5 
𝑅𝑅� (515,520,525;513,520,527) 516.5 
𝑡̃𝑡1 (0.90,0.95,0.97;0.93,0.95,0.99) 0.93875 
𝑡̃𝑡2 (0.70,0.75,0.78;0.67,0.75,0.79) 0.7025 
𝑡̃𝑡3 (0.84,0.88,0.90;0.82,0.88,0.94) 0.8475 
𝑡̃𝑡4 (0.10,0.12,0.14;0.09,0.12,0.16) 0.10625 
𝑡̃𝑡5 (0.66,0.70,0.74;0.65,0.70,0.76) 0.67625 
𝑡̃𝑡6 (0.83,0.85,0.87;0.81,0.85,0.89) 0.8275 
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Fig. 8: Behavior of system reliability w.r.t.  
probability of mutation for TIFN case 

 

Fig. 9: History of convergency w.r.t crisp and 
intuitionistic fuzzy data  

5.2 Sensitivity Analysis 

 The maximum reliability of the system is obtained 
for the population size 200 in imprecise 
environment as shown in figure 5. Also, figure 6 
shows the variations of the generations and the 
corresponding reliabilities of the system. In this 
paper, the maximum number of generations is 
taken as 200 for the increment of system reliability. 
According to figure 7, we see that the system 
reliability is uniform with respect to probability of 
crossover. The stability of the reliable system is 
depicted in figure 8. Figure 8 provides the 
guarantee of convergency of the optimality of the 
reliable system with respect to mutation operator. 
The history of convergency in precise and imprecise 
environments is shown in figure 9. From this figure 
we can say that the system reliability in imprecise 
environment overtakes the system reliability in 
crisp environment. 

6. Conclusions 

This study considers a complicated reliable system 
in crisp, fuzzy and intuitionistic fuzzy 
environments. The imprecision is represented with 
a fuzzy number that is intuitive. We get a nonlinear 
programming issue when the imprecise model is 
converted to a crispified model using an enhanced 
variant of the graded mean integration approach. 

The problem at hand is solved using a real-coded 
elitist genetic algorithm and a penalty approach. 
From this study, we obtain the maximum of the 
objective function in intuitionistic fuzzy 
environment. We, also observe that consideration 
of fuzzy environment to the taken problem yields 
better objective value in comparison to crisp 
environment. The solution's sensitivities are 
graphed in terms of the maximum number of 
generations, population size, crossover probability, 
and mutation probability. The proposed algorithm 
can be used to find the global optimum for higher 
dimensional nonlinear integer programming 
problems. For further investigation, one can 
implement other imprecise environments and our 
suggested extended graded mean integration 
method for differently designed reliable systems. 
Other heuristic methods, such as PSO, DE, ABC and 
SA, may also be used to solve this problem as well 
as newly designed real-world problems.  
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