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Abstract 

Although graph theory is a branch of pure 
mathematics particularly in topology but it 
pervades all branches of human knowledge. In this 
context historical background of the development 
of graph theory and definition of several types of 
graph are mentioned in short. Some chemical or 
physical situations, where graph theory can be 
applied, have been pointed out. Some fields in 
chemistry especially enumeration of isomers & 
Kekulé structures, determination of degree of 
unsaturations, investigation of structures and 
properties of fullerenes and other carbon cages, 
calculation of Hückel molecular orbitals (HMO) 
and related quantities, solution for coupled kinetic 
rate equations etc., where graph theory have been 
employed, are discussed briefly.  

Key words: graph theory, edge, vertices, Kekulé 
structures, Hückel molecular orbitals 

1. Introduction 

Graph theory is one of the few fields of mathematics 
with a definite date of birth [1-4]. In the year 1736, 
Euler wrote the first known paper on graph theory 
[5] where he resolved the then long standing 
Königsberg bridge problem. G. R. Kirchhoff [6] 
discovered graphs while solving problems involving 
the analysis and design of electrical networks with 
the use of ‘spanning trees’. Organic Chemistry 
played an important role for the discovery and 
subsequent improvement of graph theory. Aurthur 
Cayley [7,8] put forward the graphical concept of 
trees in the year 1857 and applied [9,10] this 
concept for the purpose of enumerating isomers of 
alkanes, CnH2n+2.  J. J. Sylvester [11] in 1878 
introduced the terminology of ‘graph’ in 
mathematics and revealed the possible applications 
in chemistry as the term ‘graphical representation’ 
had been being frequently used to describe the 
molecular structural formulas. At the time of 
Kirchhoff and Cayley, two other milestones in graph 
theory were laid. One was the four colour 
conjecture, which states that four colours are 
sufficient for colouring any atlas (a map on a plane) 
such that countries with common boundaries have 
different colours.  The other milestone was the 
invention of a puzzle with a wooden regular 
dodecahedron in 1859 by Sir W. R. Hamilton; the 
objective of the puzzle was to find a route that 
passes through each of the vertices of dodecahedron 

exactly once. This route is called ‘Hamiltonian 
circuit’ (or ‘Hamilton circuit’). It is important to 
note that till date no one has found a necessary and 
sufficient condition for the existence of such a route 
in an arbitrary graph. D. König [12] collected the 
works of other mathematicians and compiled his 
own works to write the first book on graph theory, 
which was published in 1936. By now this field has 
become almost a separate discipline in 
mathematics and a large number of books on 
mathematical graph theory have appeared, those by 
Oystein Ore [1], Robin J. Wilson [4] and Frank 
Harary [2] deserve special mention as text books. 

2. Definitions 

2.1. A graph 

A number of ways a graph may be defined. One of 
such definitions is: ‘A graph G = (V, E) consists of a 
set of object ,...),,( 321 vvvV = , called vertices and 

another set ,...),,( 321 eeeE = , called edges so that 

each edge ke is identified by an unordered pair (

ji vv , ) of vertices’. This definition permits an edge 

to be associated with a vertex pair ( ii vv , ). 
Commonly a graph is a diagram where vertices are 
represented by points and the edges by lines as 
shown in figure 1. 

 

 

 

Figure 1: A finite graph 

A graph with a finite number of vertices as well as a 
finite number of edges is said to be a finite graph; 
otherwise, it is an infinite graph.  

2.2. Subgraphs 

A graph g is said to be a subgraph of graph G if all 
the vertices and all the edges of g are in G. A 
subgraph is obtained by deleting some vertices 
and/or edges from the original graph. In Figure 1.1, 
G1.1.1 and G1.1.2 are the subgraphs of the graph G1.1. 
Two special types of subgraphs that play significant 
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roles in the chemical applications of graph theory 
are: Sachs graphs and the matching subgraphs. 

                                                
h1

h2

h3  

               1.1G                           1.1.1G                2.1.1G                                           

 Figure 1.1: Subgraphs G1.1.1 and G1.1.2 of the graph 
G1.1 

2.3. Null graphs 

A vertex having no incident edge is called an 
isolated vertex i.e., isolated vertices are of zero 
degree. A graph that contains isolated vertices is 
called a null graph. A null graph has no edges. Null 
graph of n vertices are denoted by Nn and some null 
graphs of n=1, 2, 3 ,4, 5 are shown in Figure 2. 

 

 

 

Figure 2: Null graphs of n =1, 2, 3, 4 and 5. 

2.4. Complete graphs 

A graph in which each pair of vertices is connected 
by an edge is called complete graph. A complete 
graph of n vertices is usually denoted by Kn; K1, K2, 

K3, K4, K5 being shown in Figure 3. 

 

Figure 3: Complete graphs: K1, K2, K3, K4, K5 

2.5. Regular graphs 

A graph in which all vertices are of equal degree is 
called a regular graph; if every vertex has degree d, 
the graph is called regular of degree d. Some regular 
graphs such as polygons of degree 2 and cube of 
degree 3 are shown in Figure 4. 

 

 

 

Figure 4: An octagon (a) and a cube (b). 

2.6. Isomorphic graphs 

Two graphs are isomorphic if there is a one-one 
correspondence between the vertices of one graph 
and those of other with the property that the 
number of edges joining any two vertices of one 
graph is equal to number of edges joining the 
corresponding vertices of the other. Two graphs, 
G1.1 and G1.2,  shown in Figure 5 are isomorphic to 

each other under correspondence lu → , mv → , 
nw → , rx → , py → , qz → . 

 

 

                                 

                    G1.1                                           G1.2 

Figure 5: Two isomorphic graphs, G1.1 and G1.2. 

2.7. Sachs graphs 

A Sachs graph is a graph whose components are 
either cycles and/or complete graphs with two 
vertices, K2. For example G1.3.1, G1.3.2 and G1.3.3 are 
Sachs graphs of G1.3 shown in Figure 6. 

      G1.3             G1.3.1               G1.3.2           G1.3.3              

Figure 6: Some Sachs graphs of graph G1.3. 

2.8. Matchings 

A k-matching of a graph G is the selection of k 
mutually independent edges (that are not incident 
on a common vertex).  

So it is evident that every k-matching, containing k 
copies of K2, corresponds to a subgraph of G. The 
number of k-matchings of a graph is denoted by 
m(G, k). For G1.3 (in Figure 1.6.1), m(G1.3, 3) = 8 and 
m(G1.3,4) = 1 as shown in Figure 7. 

Figure 7: 3- and 4-matching graphs of G1.3. 
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2.9. Trees and forest 

A tree is a connected graph that has no circuits. This 
means in particular that there are no multiple 
edges. It also implies that in a tree there is a unique 
arc connecting any pairs of vertices. A tree can be 

constructed by selecting any particular vertex 0v
and from this vertex edges are drawn to 

neighbouring vertices 1v , 2v , 3v , …;  again from 

each of  these vertices (say 1v ) edges can also be 

drawn to its neighbouring vertices 11v , 12v , 13v , … 
and so on as shown in Figure 8(a).  

 

 

Figure 8: A tree (a) and forest (b). 

Therefore, a tree with v  vertices has  )1( −v  edges.  
A graph that contains more than one tree is called a 
forest. A graph of three isolated trees shown in 
Figure 8(b) is an example of a forest. A forest of v  
vertices and m  component has )( mv − edges.  

A tree G(T) is said to be a spanning tree of a 
connected graph G if it is a subgraph of G and it 
contains all vertices of G. For instance, subgraph (b) 
of the graph (a) shown in Figure 9 containing edges 

654321 bbbbbb  is one of the spanning trees of the said 
graph. The spanning trees are the largest trees 
among all the trees in G. So it is quite appropriate 
to call a spanning tree a maximal tree subgraph or 
maximal tree of G. 

 

 

 

 

Figure 9: A graph (a) and one of its spanning tree (b). 

2.10. Planar graphs 

A graph that can be drawn on a plane in some 
manner so that edges have no intersection except at 
the vertices is called a planar graph. All polyhedra 
can be drawn on plane and are represented by 
planar graphs. A dodecahedron along with its 
corresponding planar representations is shown in 
Figure 10. 

        

Figure 10: A dodecahedron and its planar 
representation. 

2.11. Weighted graphs 

A weighted graph is a graph in which at least one 
edge or a vertex is weighted i.e., at least one edge 
weight is other than unity or at least on vertex 
weight is other than zero.  Graphs corresponding to 
all hydrocarbons (H-deleted graphs) are usual or 
unweighted graphs, whiles graphs containing 
heteroatoms are generally weighted graphs. 
Sometimes weighted graphs appear as subgraph(s) 
of a parent unweighted graph in graph factorization 
procedure.  

2.12. Adjacency matrix of a graph 

Adjacency matrix ( A ) of a graph G is a square 
matrix whose ith row and jth column element is                                  

         
[ ] ijij AA =

 = 0 for i = j 

                 = 1 for i, j adjacent 

                 = 0 otherwise.  

A six membered cyclic graph and its corresponding 
adjacency matrix ( A ) are shown Figure 11 below.                                                                                                                                                                                                                                   

                                                                                                                                                                                                                                                                                                                                                          

                                                                                                                                                                   

Figure 11:  A graph of 6-membered cycle with 
labelled vertices 

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 
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 
 
 
 

A

 

2.13. Laplacian Matrix of a graph 

Laplacian matrix ( L ) of a graph G is a square 
matrix whose ith row and jth column element is  
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[ ] ij jij
L L d= =

 for j i=  

                 = 1−  for i, j adjacent 

                 = 0 otherwise 

where   jd  is the degree of the j th vertex. 

A six membered cyclic graph shown in Figure 11 and 
its corresponding Laplacian matrix ( L ) are shown 
below.                            

2 1 0 0 0 1
1 2 1 0 0 0

0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
1 0 0 0 1 2

− − 
 − − 
 − −

=  − − 
 − −
 
− − 

L

 

3. Where to apply graph theory  

For a chemist or a physicist, geometric realization 
of a problem by a graph (namely collection of 
‘points’ and of ‘lines’ joining some of these points) 
is more appealing. For this reason graph theory is 
becoming more and more acceptable tool for 
dealing with physico-chemical problems. The 
following correspondences between graphs and 
physical/chemical categories have found numerous 
applications in physics and chemistry: 

A graph may correspond to a molecule i.e., points 
symbolise atoms and lines symbolise chemical 
bonds 

A graph may correspond to a reaction mixture i.e., 
points symbolise chemical species and lines 
symbolise chemical conversion among the species 

A graph may correspond to a system of interacting 
particles i.e., points symbolise particle and lines 
symbolise interaction among the particles. 

Thus, a graph can be associated to any chemical or 
physical situation that has the above 
correspondence and the properties, which depend 
on the adjacency or connectivity, may be obtained 
from graphical operation. 

4. Graph theory in some fields of chemistry  

Although graph theory seemed to be insignificant at 
that time of its beginning due to its dealing with 
entertaining puzzles, its development during past 
few decades and subsequent applications in 
numerous fields have given strong impetus for its 
further enrichment. Due to its inherent simplicity, 
this theory has been used in a number of fields of 

human thought and enriched several fields such as 
engineering, chemical, physical, social, biological, 
computer science, linguistics and many others. For 
instance, the connection between graph theory and 
chemistry, from the time of birth of the former, has 
enriched one another and now these two disciplines 
are so interrelated that very soon graph theory will 
be included in the chemistry curriculum. There are 
a large number of fields in chemistry where graph 
theory has been applied successfully; few such 
activities may be mentioned as follows.  

Enumeration of isomers:  

Enumeration of isomers i.e., to find out the number 
of isomers arising, either by addition to or 
substituting in, a parent molecule is a fundamental 
topics in Chemistry. During 1935-1937, G. Pólya 
[13] developed his powerful theorem for isomer 
enumeration problems in a direct and elegant 
manner. Now-a-days there are a large number of 
methods  [7-10,13-19] to handle this problem, some 
of them are based on Pólya’s theorem, while the 
others are based on double coset representation 
theory [20,21], the table of marks [22-25], and so 
on.  

Enumeration of Kekulé structures 

The study on the Kekulé valence structures [27-29] 
has been the focus of long time attractions for many 
researchers. Kekulé valence structures are 
important parameter to characteristic polycyclic 
conjugated hydrocarbon, to calculate molecular 
resonance energy, to predict aromaticity, to guess 
the reactivity, to assess the stability etc. of polycyclic 
aromatic hydrocarbons [26-28]. Graph theory can 
be applied for the enumeration of Kekulé structures 
in benzenoid hydrocarbons and their applications 
[30-44] 

Some formulae of physicochemical 
importance 

Some important formulae such as Euler’s 
polyhedron formula, degree of unsaturations and 
nitrogen rule along with some of their consequences 
have been found to be derived graph theoretically 
using the concept of tree and can be found in several 
literatures [1-4, 45-49] 

Investigation of structures and properties of 
fullerenes and other carbon cages 

The discovery [50] of fullerenes in laser vapour of 
graphite has resulted in a surge of activity among 
theoeretical chemists to analyse the stability and 
structure of carbon clusters [46, 49, 50-70]. A 
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Buckminster Fullerene (C60) has been shown in the 
Figure 12 below.  

 

 

 

 

 

 

Figure 12: Buckminster Fullerene (C60) 

Graphene is an allotrope of carbon and is basically 
monolayer of graphite, i.e., graphene sheets stack to 
form graphite. Hückel band structure of such 
graphene sheet has analytically been investigated 
by several authors.. 

Carbon nanotube, particularly single walled 
(SWNT) ones can be imagined to be formed by 
rolling a single layer graphite (i.e., graphene) sheet 
into a seamless cylinder and depending on mode of 
rolling up it can be armchair, zigzag, and chiral. The 
wrapping of graphene sheet can be represented by 
a pair of indices (n,m). Cnostruction of a nanotube 
by rolling up of a graphene sheet is shown in Figure 
13. The integers, n and m, are the number of unit 
vectors along the two directions on the graphene 
sheet. If m = 0, the nanotube is zigzag (n,0), if n = 
m, it is armchair (n,n) and if n  and m are different 
it is chiral (n,m). 

Figure 13: Construction of nanotube by rolling up 
of a graphene sheet 

Let us consider a nanotube graph which has length 
l  (i.e., number of polyacene belt along the tube 
length) and circumference r  (i.e., number of 
phenyl rings in each polyacene belt) as shown in the 
above Figure. 

Carbon nanotubes bent into rings are latest 
nanostructure with surprising properties. Two ends 
of a nanotube can be glued to make a nanotorous. 
The amount of twist before two ends are glued 
result different kinds of nanotori. Here, we are 
considering only the simple one having zero twist 
before it gets glued. 

Calculations of Hückel molecular orbitals 
(HMO) and related quantities 

This includes characteristic polynomial (CP) 
coefficients, eigenvalues, eigenvectors, total π-
electron energy, charge densities, bond orders etc. 
[71-78, 14, 30, 31, 79-97]. 

Search for topological indices and their 
applications  

Topological indices of molecules are some 
numerical quantities that contain molecular     
information about the molecular graphs. In this 
area of theoretical chemistry, significant 
contributors are: H. Wiener, M. Randić, H. Hosoya, 
N. Trinajstić, R. E. Merrifield and H. E. Simmons. 
There are several topological indices e.g. Wiener 
index, Hosoya Index, Randić branching index, 
molecular identification number etc. that can be 
used to predict several molecular properties 
[30,14,98-114]. 

Solutions for coupled kinetic rate equations  

Solution for multistep coupled kinetic rate 
equations to obtain the concentration of the species 
involved has also been carried out in the light of 
graph theory [115]. This concept has also been 
extended to the reactions involving linear chains 
and cycles [116]. 

Conclusion 

As mentioned in this study, graph theory is an 
important tool to study several properties of 
molecules, since any molecular structure represents 
a graph. Although nowadays people are not relying 
on Hückel molecular orbital theory but in case of 
large molecules particularly, polycyclic 
hydrocarbons, fullerenes, nanotubes, nanotori etc., 
it is difficult to use other more accurate methods 
which are very satisfactory for small molecule, in 
that case HMO is convenient to use. Again to gain a 
first-hand insight still HMO is valuable tool for 
experimental chemists particularly, organic 
chemists. So there are many more things to do with 
HMO theory for polymers and other large polycyclic 
hydrocarbons. 

Although a large number of topological indices were 
proposed and have been used to study quantitative 
structure activity relationship (QSAR) and 
quantitative structure property relationship 
(QSPR) but there are ample scope to develop 
algorithms to calculate such indices of some novel 
chemical compounds with biological importance 
and also to investigate interrelationship among the 
proposed indices.   
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