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The growing relationship between prey and their predator is one of the important aspects in the
field of ecology and mathematical biology. On the other hand, the utility of fractional calculus in
different types of mathematical modelling have been applied extensively. In this paper, a fractional
order prey–predator model is developed with the consideration of Holling type-I and Holling type-II
functional response of the predator. As infection spreads through prey, the prey population is divided
into two parts. In addition, we exploit the effect of harvesting to control the excessive spread of the
infection. The existence and uniqueness criteria, the boundedness of the solution of the proposed
model are investigated. A number of five possible equilibrium points of the proposed model are
determined along with the feasibility conditions for each equilibrium points. The local stability at
these equilibrium points and global stability at interior equilibrium point are investigated. Numerical
simulation is presented with the help of modified Predictor-corrector method in MATLAB software
to understand the dynamics of the proposed model.
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1. Introduction

Prey–predator models are valuable for acquiring
the knowledge of the prey–predator relationship,
as it acts vital role in both the theoretical and
experimental ecology. Lotka [1] and Volterra
[2] were the first who develops the mathematical
models of prey–predator dynamics. After that,
their model is extended and modified by many
researchers in this research field. Kermack and
McKendrick [3] who studied the transmission of
infectious diseases in their model, has the great
impact in the field of epidemiology. Anderson
and May [4] combine the field of theoretical ecol-
ogy with the epidemiology and formulated a prey–
predator model with disease in population. An
eco-epidemiological system with sound prey, in-
fected prey and predator is investigated by Chat-
topadhyay and Arino [5]. Arino et al. [6] proposed
a ratio-dependent predator–prey model with infec-
tion in prey population. A mathematical model
of an infected predator-prey system with differ-
ent predators’ functional response is analysed by
Bairagi et al. [7]. Recently, a prey-predator dy-
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namics of disease transmission via pestamong the
prey population is discussed by Das et al. [8].
Sarkar et al. [9] studied a prey-predator math-
ematical model with different kinds of response
function. Impact of fear effect on the growth of
prey in a prey-predator mathematical model is in-
vestigated by Sarkar and Khajanchi [10]. A prey–
predator system with multiple delays and counter
attacking strategies is analysed by Kaushik and
Banerjee [11]. Panday et al. [12] studied a stage-
structured prey-predator model with fear-induced
group defense. There is plenty of interesting re-
search works related to ecology and epidemiology,
which are found in [13–16].

The fractional order differential equation is a su-
perlative tool of defining the memory of numerous
biological species and also and it has very close
relations to the fractals. As the fractional order
derivative is more realistic than ordinary differ-
ential equation, this type of models has earned
popularity among the researchers. Fractional-
order differential equations can be defined sev-
eral ways, such as Caputo type, Riemann-Liouville
type, Grunwald-Letnikov type, etc. Ahmed et al.
[17] determined the Routh-Hurwitz conditions for
the fractional order differential equation and their
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applications. Later, the equilibrium points, sta-
bility and numerical solutions of fractional order
prey-predator and rabies model are investigated in
another piece of work [18]. Panja [19] investigated
the stability of a Caputo type fractional-order
prey-predator model with Holling type II func-
tional response. A Caputo fractional-order prey-
predator system incorporating harvesting and the
fractional response of Holling type II is studied by
Mandal et al. [20]. A prey-predator system with
fear effect and group defence is analysed by Das
and Samanta [21] with the help of Caputo frac-
tional differential equation. There are few works
have been done on fractional differential equation
[22–24].
Harvesting has a strong influence on the dynamics
of predator–prey system. The dynamics of preda-
tor and prey populations with selective harvest-
ing has been elaborated in many perspectives. A
modified Leslie–Gower prey–predator model in the
presence of nonlinear harvesting in prey is inves-
tigated by Gupta and Chandra [25]. A predator–
prey model with square root functional response
of prey with predator harvesting is analysed by
Sahoo et al. [26]. Toaha and Rustam [27] studied
an optimal harvesting of predator-prey model that
consists of two zones, namely the free fishing and
reserve zones. Dubey et al. [28] deals with a three-
dimensional prey-predator model with Crowley-
Martin type functional order incorporating opti-
mal harvesting policy. A fuzzy prey–predator sys-
tem consists of two preys and one predator with
time delay and harvesting is investigated by Pal
et al. [29]. Some authors considered harvesting
for either on prey population or predator popula-
tion or both predator and prey populations (for
examples in [20, 30–32]).
In this paper, we construct an eco-epidemic prey-
predator model incorporating harvesting effort
by using some assumptions. In addition, the
model is converted to a fractional order prey-
predator model by using the concept of frac-
tional order differentiation. In theoretical study
section, we analyse the existence and unique-
ness criteria, the boundedness of the solution of
the proposed model. Five possible equilibrium
points of the proposed model are determined along
with the feasibility conditions for each equilibrium
points. The local stability at these equilibrium
points and global stability at interior equilibrium
point are investigated. Numerical simulation is
presented with the help of modified Predictor-
corrector method [33, 34] in MATLAB software to
understand the dynamics of the proposed model.

The effect of harvesting effort and order of frac-
tional order differentiation for the fractional order
prey-predator model is presented elaborately.
The remaining structure of the paper is organ-
ised as follows. Some preliminaries which consists
useful definition, lemmas and theorems, are pre-
sented in section 2. The detail discussion on frac-
tional order model i.e. the mathematical formu-
lation is described in section 3. Section 4 covers
the theoretical study which contains the existence
and uniqueness, boundedness, local stability and
global stability of the model. Section 5 presents
numerical simulation which contains graphical de-
liberations of the proposed model. The concluding
remarks and the future scope of our work are given
in section 6.

2. Some Preliminaries
In this section, we state some useful definitions,
lemmas and theorems of fractional order systems
to describe the analytic results of our proposed
model.
Definition 1[35]: The Caputo type fractional
order derivative of order σ > 0 for a function
f : Cn

f [t0,∞) → R is defined and denoted as:

Cf

t0 D
σ
t f(t) =

1

Γ(n− σ)

∫ t

t0

f (n)(r)

(t− r)σ−n+1
dr

where, Cn
f [t0,∞) is a space of n times continuously

differentiable functions on [t0,∞), t > t0 and Γ(·)
is the Gamma function with n ∈ Z+ such that
σ ∈ (n− 1, n).
In particular, for σ ∈ (0, 1), above definition re-
duces to

Cf

t0 D
σ
t f(t) =

1

Γ(1− σ)

∫ t

t0

f ′(r)

(t− r)σ
dr.

Lemma 1[36]: Assume that σ ∈ (0, 1), f(t) ∈
Cn

f [a, b] and
Cf

t0 D
σ
t f(t) is continuous in [a, b]. If

Cf

t0 D
σ
t f(t) ≥ 0

(
Cf

t0 D
σ
t f(t) ≤ 0

)
, t ∈ [a, b] then

f(t) is a non-decreasing (non-increasing) function
∀ t ∈ [a, b].
Lemma 2[37]: Consider the system Cf

t0 D
σ
t Z(t) =

Ψ(t, Z), t0 > 0, with initial condition Z(t0) = Zt0 ,
where σ ∈ (0, 1], Ψ : [t0,∞)×Σ → R

n, Σ ⊆ Rn, if
Ψ(t, Z) satisfies the local Lipschitz condition with
respect to Z ∈ Rn:

∥Ψ(t, Z)−Ψ(t, Z1)∥ ≤ K∥Z − Z1∥,
then ∃ a unique solution on [t0,∞) × Σ, where

∥Z(u1, u2, . . . , un)−Z1(v1, v2, . . . , vn)∥ =

n∑
i=1

|ui−

vi|, ui, vi ∈ R.
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Lemma 3[38]: Assume that X : [t0,∞) → R be
continuous function satisfies the following:

Cf

t0 D
σ
t Z(t) + µZ(t) ≤ k, Z(t0) = Z0, t0 ≥ 0,

µ, k ∈ R

Also, for µ ̸= 0, σ ∈ (0, 1], and consider Eσ as the
Mittag-Lefflar function of one parameter, we have
the following inequality:

Z(t) ≤
(
Z0 −

k

µ

)
Eσ[−µ(t− t0)

σ] +
k

µ
, ∀ t ≥ t0.

Theorem 1[39]: Let us assume that, the n-
dimensional fractional differential equation sys-
tem Cf

t0 D
σ
t X(t) = PX; X(t0) = X0 > 0, where P

is arbitrary constant n× n matrix and σ ∈ (0, 1).
Then,

z If all eigenvalues λi, i = 1, 2, . . . n of P sat-
isfy | arg(λi)∥ > σπ

2 , the solution x = 0 is
asymptotically stable.

z If all eigenvalues of P satisfy | arg(λi)| ≥ σπ
2

and eigenvalues with | arg(λi)| = σπ
2 have

same geometric multiplicity and algebraic
multiplicity, the solution x = 0 is stable.

Theorem 2[35]: Consider the fractional-order
system of order σ ∈ (0, 1) such that

Cf

t0 D
σ
t X(t) = f(X), X(t0) = X0 > 0

where, X ∈ R
n. The equilibrium points of the

above system are solutions to the equation f(X) =
0. An equilibrium point is locally asymptotically
stable if all the eigenvalues λi of the Jacobian ma-
trix J = ∂f

∂X evaluated at the equilibrium satisfy
| arg(λi)| > σπ

2 .

3. Model Formulation
The total population is divided into two parts, i.e.,
prey population and predator population. Fur-
ther, the prey population has two sub parts, i.e.,
susceptible prey and infected prey. In the model
formulation, susceptible prey, infected prey and
predator population is denoted as S(t), I(t) and

P (t) respectively at time t. To construct the
mathematical model, we exploit the following as-
sumption:

(i) The susceptible prey reproduces with logis-
tic law and the intrinsic growth rate of sus-
ceptible prey is denoted as M . Also, we
consider that, K is the carrying capacity of
the system.

(ii) At the infection rate A, the susceptible
prey becomes infected through direct con-
tact with the infected prey, by the mass ac-
tion law.

(iii) We assume the predation function of sus-
ceptible prey as B1S

(R+S) . This type of func-
tion is commonly known as Holling type-II
functional response. Here, B1 is the maxi-
mum capturing rate of susceptible prey by
the predator and R is the half saturation
constant. On the other hand, the preda-
tion function of infected prey is considered
as B2I, Holling type-I functional response.
Here, B2 is the maximum capturing rate of
infected prey by the predator.

(iv) The conversion efficiency on susceptible
prey and infected prey is measured as E1

and E2 respectively.
(v) Some of the infected prey acquire immunity

at a rateC and get recovered from the infec-
tion. Therefore, some of the infected prey
moves to susceptible class as they become
susceptible again.

(vi) Here, the parameter F1 and F2 indicate the
death rate of infected prey and predator re-
spectively.

(vii) Based on CPUE (catch-per unit-effort) hy-
pothesis [40], D1HS and D2HI are catch
rate functions for susceptible prey and in-
fected prey, where H is the harvesting ef-
fort and Di; i = 1, 2 indicates catchability
coefficients of two prey species.

Combining all above assumptions the final system
is as follows:

dS

dt
=MS

(
1− S

K

)
−ASI − B1SP

R+ S
+ CI −D1HS

dI

dt
= ASI −B2IP − CI − F1I −D2HI

dP

dt
=
E1B1SP

R+ S
+ E2B2IP − F2P

(1)
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with the initial conditions, S(0) > 0, I(0) > 0,
P (0) > 0. Table 1 indicates the notations and
units/dimensions of the parameters and variables.

The schematic diagram of the model is presented
in Fig. 1.

Table 1: Description and Units/dimensions of the variables and model parameters
Variables/ Description Units/
Parameters Dimensions

S(t) Susceptible prey population at time t Mass
I(t) Infected prey population at time t Mass
P (t) Predator population at time t Mass
M Intrinsic growth rate Mass per unit time
K Carrying capacity Mass
A Rate of infection between susceptible prey and infected prey Mass per unit time
R Half saturation constant Mass−1

B1 Predation rate on susceptible prey Mass per unit time
B2 Predation rate on infected prey Mass per unit time
C Recovery rate of infected prey Mass per unit time
E1 Conversion efficiency on susceptible prey Dimensionless
E2 Conversion efficiency on infected prey Dimensionless
F1 Death rate of infected prey Mass per unit time
F2 Natural death rate of predator Mass per unit time
D1 Catchability coefficient of susceptible prey Mass per unit time
D2 Catchability coefficient of infected prey Mass per unit time
H Harvesting effort Mass per unit time

Fig. 1. Schematic diagram of the model

Now, we have proposed the fractional–order
derivative of above mathematical model (1) with
the help of fractional–order Caputo–type deriva-
tive [41]. Using the concept of fractional–order

derivative, the model (1) becomes fractional–order
prey–predator model and the model (1) reduces to
the following form:
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Cf

t0 D
σ
t S(t) = M̃S

(
1− S

K̃

)
− ÃSI − B̃1SP

R̃+ S
+ C̃I − D̃1H̃S

Cf

t0 D
σ
t I(t) = ÃSI − B̃2IP − C̃I − F̃1I − D̃2H̃I

Cf

t0 D
σ
t P (t) =

Ẽ1B̃1SP

R̃+ S
+ Ẽ2B̃2IP − F̃2P

(2)

with initially, S(t0) = S0 > 0, I(t0) = I0 > 0
and P (t0) = P0 > 0. Also, σ(0 < σ < 1) is frac-
tional differentiation for three population classes
and Cf

t0 D
σ
t is the fractional derivative in the sense

of Caputo with initial time t0 ≥ 0. Since the left-
hand dimension and right-hand dimension of the
system of equations (2) are time(−σ) and time(−1)

respectively, we need to modify the system (2) as

Cf

t0 D
σ
t S(t) = M̃σS

(
1− S

K̃

)
− ÃσSI − B̃1

σ
SP

R̃+ S
+ C̃σI − D̃1

σ
H̃σS

Cf

t0 D
σ
t I(t) = ÃσSI − B̃2

σ
IP − C̃σI − F̃1

σ
I − D̃2

σ
H̃σI

Cf

t0 D
σ
t P (t) =

Ẽ1
σ
B̃1

σ
SP

R̃+ S
+ Ẽ2

σ
B̃2

σ
IP − F̃2

σ
P

(3)

For simplicity, we substitute parameters as M =
M̃σ, K = K̃, A = Ãσ, B1 = B̃1

σ, B2 = B̃2
σ,

R = R̃, C = C̃σ, F1 = F̃1
σ, F2 = F̃2

σ, D1 = D̃1
σ,

D2 = D̃2
σ, E1 = Ẽ1

σ, E2 = Ẽ2
σ, H = H̃σ and

the system (3) reduces to the following form:



Cf

t0 D
σ
t S(t) =MS

(
1− S

K

)
−ASI − B1SP

R+ S
+ CI −D1HS

Cf

t0 D
σ
t I(t) = ASI −B2IP − CI − F1I −D2HI

Cf

t0 D
σ
t P (t) =

E1B1SP

R+ S
+ E2B2IP − F2P

(4)

4. Theoretical Study
The existence and uniqueness, non-negativity and
boundedness, equilibrium points and local stabil-
ity and global stability are the most imperative
and valuable part in the perspective of mathe-
matical ecology. In the theoretical study section,
the existence and uniqueness of solutions, non-
negativity and boundedness, equilibrium points
and local stability and global stability of the sys-
tem (4) are investigated.

4.1 Existence and uniqueness of solutions
In the following theorem, the existence and
uniqueness of the solutions is investigated.
Theorem 3: For every initial point X(t0) =
(St0 , It0 , Pt0) ∈ R, ∃ a unique solution X(t) =
(S(t), I(t), P (t)) ∈ R of the system (4) for any
time t > t0.
Proof: We assume the time interval [t0,K1],
K1 < +∞ and also consider the following region:

R = {(S, I, P ) ∈ R3 : max{|S|, |I|, |P |} ≤ K2} where K2 is finite positive real number.

Let, T (X) = (T1(X), T2(X), T3(X)), where X = (S, I, P )

and T1(X) =MS

(
1− S

K

)
−ASI − B1SP

R+ S
+ CI −D1HS,

T2(X) = ASI −B2IP − CI − F1I −D2HI,

T3(X) =
E1B1SP

R+ S
+ E2B2IP − F2P

For any X, X1 ∈ R. Then
∥T (X)− T (X1)∥ = |T1(X)− T1(X1)|+ |T2(X)− T2(X1)|+ |T3(X)− T3(X1)|
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=

∣∣∣∣M(S−S1)−
M

K
(S2 − S2

1)−A(SI − S1I1)−B1

[
SP

R+ S
− S1P1

R+ S1

]
+ C(I−I1)−D1H(S − S1)

∣∣∣∣
+ |A(SI − S1I1)−B2(IP − I1P1)− (C + F1 +D2H)(I − I1)|

+

∣∣∣∣E1B1

[
SP

R+ S
− S1P1

R+ S1

]
+ E2B2(IP − I1P1)− F2(P − P1)

∣∣∣∣
≤
∣∣∣∣M(S − S1) +

2K2M

K
(S − S1) +AK2(S − S1) +AK2(I − I1) +B1RK2(S − S1)

+B1K2(1 +K2)(P − P1) + C(I − I1) +D1H(S − S1)

∣∣∣∣
+ |AK2(S − S1) +AK2(I − I1) +B2K2(I − I1) +B2K2(P − P1) + (C + F1 +D2H)(I − I1)|
+ |E1B1RK2(S − S1) + E1B1K2(1 +K2)(P − P1) + E2B2K2(I − I1)

+ E2B2K2(P − P1) + F2(P − P1)|
≤ θ1|S − S1|+ θ2|I − I1|+ θ3|P − P1| ≤ θ∥X −X1∥

where, θ = max{θ1, θ2, θ3} and

θ1 =M +
2K2M

K
+ 2AK2 +D1H + (1 + E1)B1RK2,

θ2 = 2AK2 + 2C + F1 +D2H + (1 + E2)B2K2,
θ3 = (1 + E1)(1 +K2)B1K2 + (1 + E2)B2K2 + F2.

Hence, the function T (X) satisfies Lipshitz’s con-
dition. Therefore, by using the Lemma 2, ∃ a
unique solution X(t) = (S(t), I(t), P (t)) ∈ R
for every initial point X(t0) = (St0 , It0 , Pt0) ∈ R,
∀ t > t0.

4.2 Non-negativity and boundedness
In the following theorem, the non-negativity and
boundedness of the system (4) is investigated.
Theorem 4: The solutions of system (4) which
originate in R3

+ are non-negative and bounded
uniformly if E2 < E1.
Proof: To prove non-negativity of the system (4),
we consider that

R+ = {(S, I, P ) ∈ R : S, I, P ∈ R+},

where R+ indicates the set of all real numbers
greater than or equals to zero. Let, X(t0) = (St0 ,
It0 ,Pt0) ∈ R+ be the initial solution of the system
(4). Suppose ζ is a real number satisfying t0 ≤
t < ζ such that

S(t) > 0, t0 ≤ t < ζ

S(t) = 0, t = ζ

S(t) < 0, t = ζ+

From the first equation of the system (4), we have
Cf

t0 D
σ
t S(t)

∣∣
S(ζ)=0

= 0. By Lemma 1, we have

S(ζ+) = 0, which contradicts S(ζ+) < 0. Hence,
we have S(t) ≥ 0, ∀ t ∈ [t0,∞]. By similar man-
ner, we can prove that I(t) ≥ 0 and P (t) ≥ 0∀ t ∈
[t0,∞].
Next, to prove the boundedness, let us consider
the function

W (t) = S(t) + I(t) +
1

E1
P (t).

Then, for E2 < E1 we have

Cf

t0 D
σ
t W (t) = MS

(
1− S

K

)
+

(
E2

E1
− 1

)
B2IP

−D1HS −D2HI − F1I −
F2

E1
P

≤MS

(
1− S

K

)
Then for arbitrarily chosen η, we have

Cf

t0 D
σ
t W (t) + ηW ≤ MS

(
1− S

K
+

η

M

)
since S(t) > 0

≤ −M
K

(
S − K(M + η)

2M

)2

+
K(M + η)2

4M

≤ K(M + η)2

4M
.
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with the help of the Lemma 3, we have

W (t) ≤
(
W (t0)−

K(M + η)2

4Mη

)
Eσ[−η(t− t0)

σ] +
K(M + η)2

4Mη
→ K(M + η)2

4Mη
as t→ ∞.

Therefore, for E2 < E1, the solutions of system (4) starting in R+ are lying in the region

∆ =

{
(S, I, P ) ∈ R+ : S + I +

1

E1
P (t) ≤ K(M + η)2

4Mη
+ ϵ, ϵ > 0

}
.

4.3 Equilibrium points and local stability
analysis

We investigate the existence of five equilibrium
points namely the trivial equilibrium, the bound-
ary or axial equilibrium, the infection free equi-
librium, the predator free equilibrium and the in-
terior equilibrium. We use some theorems to in-
vestigate local stability of the system (4) for five
equilibrium points.
Theorem 5: The trivial equilibrium point
E0(0, 0, 0) is a saddle point if M > D1H and sta-
ble or else.
Proof: The Jacobian matrix at the trivial equi-
librium E0 = (0, 0, 0) is given by

J(E0) =

M −D1H C 0

0 −(C + F1 +D2H) 0

0 0 −F2



Therefore, all eigenvalues of J(E0) are λ1 =M −
D1H, λ2 = −(C + F1 +D2H), λ3 = −F2.
Here, λ1 will be negative if M < D1H, when
| arg(λ1)| = π > σπ

2 and λ1 will be positive if
M > D1H, when | arg(λ1)| = 0 < σπ

2 . Clearly,
other eigenvalues are negative. Therefore,

| arg(λi)| = π >
σπ

2
, for i = 2, 3.

Hence, the trivial equilibrium point is a saddle
point if M > D1H. Therefore, E0 is unstable. If
M < D1H, E0 become stable and all the popula-
tion are going to extinct.
Theorem 6: The boundary or axial equilibrium
point E1(K, 0, 0) is locally asymptotically stable if
AK < C + F1 +D2H, E1B1K

R+K < F2 and unstable
otherwise.
Proof: The Jacobian matrix at the boundary
equilibrium E1 = (K, 0, 0) is given by

J(E1) =


−M −D1H −AK + C − B1K

R+K

0 AK − C − F1 −D2H 0

0 0 E1B1K
R+K − F2


The characteristic equation at E1(K, 0, 0) is

(λ+M +D1H)(λ−AK + C + F1 +D2H)

(
λ− E1B1K

R+K
+ F2

)
= 0.

The eigenvalues of J(E)1 are λ1 = −M − D1H,
λ2 = AK − C − F1 −D2H, λ3 = E1B1K

R+K − F2.
Clearly, | arg(λi)| = π > θπ

2 , for i = 1, 2, 3 when
AK < C + F1 + D2H and E1B1K

R+K < F2 holds.
Therefore, the boundary equilibrium E1 is locally
asymptotically stable if AK < C + F1 + D2H,
E1B1K
R+K < F2 and unstable otherwise.

Theorem 7: The infection free equilibrium
E2(S1, 0, P1) is locally asymptotically stable if
(a) AS1 < B2P1 + C + F1 +D2H and
(b) M + E1B1S1

R+S1
< 2MS1

K + RB1P1

(R+S1)2
+D1H + F2

where, S1 = F2R
E1B1−F2

and P1 =

R+S1

B1

[
M
(
1− S1

K

)
−D1H

]
, with E1B1 > F2

and M
(
1− S1

K

)
> D1H.

Proof: By solving the first and last equation of
the system (4) at the point E2 = (S1, 0, P1), we
have

S1 =
F2R

E1B1 − F2

and P1 =
R+ S1

B1

[
M

(
1− S1

K

)
−D1H

]
.

The equilibrium E2 is feasible if E1B1 > F2 and
M
(
1− S1

K

)
> D1H.
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Now, the Jacobian matrix for E2(S1, 0, P1) is given by,

J(E2) =


M − 2MS1

K − RB1P1

(R+S1)2
−D1H −AS1 + C − B1S1

R+S1

0 AS1 − C −B2P1 − F1 −D2H 0

RE1B1P1

(R+S1)2
E2B2P1

E1B1S1

R+S1
− F2


The characteristic equation at E2(S1, 0, P1) is

(AS1 − C −B2P1 − F1 −D2H − λ)

(
λ2 − λ

(
M − 2MS1

K
− RB1P1

(R+ S1)2
−D1H +

E1B1S1

R+ S1
− F2

)
+

(
M − 2MS1

K
− RB1P1

(R+ S1)2
−D1H

)(
E1B1S1

R+ S1
− F2

)
+

B1S1

R+ S1

)
= 0.

The eigenvalues of the above Jacobian matrix for E2(S1, 0, P1) is λ1 = AS1 −C −B2P1 −F1 −D2H and
other two eigenvalues can be evaluated from the equation

λ2 − λ

(
M − 2MS1

K
− RB1P1

(R+ S1)2
−D1H +

E1B1S1

R+ S1
− F2

)
+

(
M − 2MS1

K
− RB1P1

(R+ S1)2
−D1H

)(
E1B1S1

R+ S1
− F2

)
+

B1S1

R+ S1
= 0.

Clearly, | arg(λi)| = π > θπ
2 , for i = 1, 2, 3 when

(a) AS1 < B2P1 + C + F1 +D2H and
(b) M + E1B1S1

R+S1
< 2MS1

K + RB1P1

(R+S1)2
+D1H + F2.

Therefore, the equilibrium E2 is locally asymp-
totically stable if above two condition holds and
unstable otherwise.
Theorem 8: The predator free equilibrium
E3(S2, I2, 0) is locally asymptotically stable if

(a) M < 2MS2

K +AI2 +D1H and
(b) E1B1S2

R+S2
+ E2B2I2 < F2

where, S2 = C+F1+D2H
A

and I2 = (C+F1+D2H)[M(KA−C−F1−D2H)−D1HKA]
A2(F1+D2H) ,

with M(KA− C − F1 −D2H) > D1HKA.
Proof: By solving the first and second equation
of the system (4) at the point E3 = (S2, I2, 0), we
have

S2 =
C + F1 +D2H

A
and I2 =

(C + F1 +D2H)[M(KA− C − F1 −D2H)−D1HKA]

A2(F1 +D2H)
.

The equilibrium E3 is feasible if M(KA− C − F1 −D2H) > D1HKA.
Now, the Jacobian matrix for E3(S2, I2, 0) is given by,

J(E3) =


M − 2MS2

K −AI2 −D1H −AS2 + C − B1S2

R+S2

AI2 0 −B2I2

0 0 E1B1S2

R+S2
+ E2B2I2 − F2


The characteristic equation at E3(S2, I2, 0) is(

E1B1S2

R+ S2
+ E2B2I2 − F2 − λ

)[
λ2 − λ

(
M − 2MS2

K
−AI2 −D1H

)
+AI2(AS2 − C)

]
= 0.

The eigenvalues of the above Jacobian matrix for
E3(S2, I2, 0) is

λ1 =
E1B1S2

R+ S2
+ E2B2I2 − F2

and other two eigenvalues can be evaluated from
the equation

λ2 − λ

(
M − 2MS2

K
−AI2 −D1H

)
+AI2(AS2 − C) = 0.
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Clearly, | arg(λi)| = π > θπ
2 , for i = 1, 2, 3 when

(a) M < 2MS2

K +AI2 +D1H and
(b) E1B1S2

R+S2
+ E2B2I2 < F2.

Therefore, the equilibrium E3 is locally asymp-
totically stable if above two condition holds and
unstable otherwise.
Theorem 9: The interior equilibrium E∗(S∗, I∗,
P ∗) is conditionally locally asymptotically sta-
ble, where S∗ = C+F1+D2H+B2P

∗

A , I∗ = 1
E2B2[

F2 − E1B1S
∗

R+S∗

]
with F2 >

E1B1S
∗

R+S∗ and P ∗ can be

determined from the first equation of the system

(4) at E∗.
Proof: From the equations given in system (4),

S∗ =
C + F1 +D2H +B2P

∗

A

and I∗ =
1

E2B2

[
F2 −

E1B1S
∗

R+ S∗

]
.

If we put the value of S∗ and I∗ in the above
system of equations, then we get the value of P ∗.
The equilibrium E∗ is feasible if F2 >

E1B1S
∗

R+S∗ .

The Jacobian matrix for E∗(S∗, I∗, P ∗) is given
by,

J(E∗) =


M − 2MS∗

K −AI∗ − RB1P
∗

(R+S∗)2 −D1H −AS∗ + C −B1S
∗

a+S∗

AI∗ AS∗ − C −B2P
∗ − F1 −D2H −B2I

∗

RE1B1P
∗

(R+S∗)2 E2B2P
∗ E1B1S

∗

R+S∗ + E2B2I
∗ − F2



The characteristic equation of this system around
E∗ can be written as,

λ3 +Ω1λ
2 +Ω2λ+Ω3 = 0 (5)

The values of Ω1, Ω2 and Ω3 can be determined
from the Jacobian matrix J(E∗), where

Ω1 = −(A11 +A22 +A33),
Ω2 = [(A22A33 +A11A33 +A11A22)

− (A23A32 +A13A31 +A12A21)],
Ω3 = −[(A11A22A33 +A12A23A31

+A13A21A32)− (A11A23A32

+A12A21A33 +A13A22A31)]

where, A11 =M − 2MS∗

K −AI∗ − RB1P
∗

(R+S∗)2 −D1H,
A12 = −AS∗ + C, A13 = −B1S

∗

a+S∗ , A21 = AI∗,
A22 = AS∗−C−B2P

∗−F1−D2H, A23 = −B2I
∗,

A31 = RE1B1P
∗

(R+S∗)2 , A32 = E2B2P
∗, A33 = E1B1S

∗

R+S∗ +

E2B2I
∗ − F2.

Let, ∆ be the discriminant of polynomial (5) and
it can be expressed as follows

∆ = 18Ω1Ω2Ω3 +Ω2
1Ω

2
2 − 4Ω2

1Ω3 − 4Ω2
2 − 27Ω2

3.

Clearly, interior equilibrium point E∗ is locally
asymptotically stable if any one of the following
condition holds [17]:

z ∆ > 0, Ω1 > 0, Ω3 > 0 and Ω1Ω2 > Ω3,

z ∆ < 0, Ω1 ≥ 0, Ω2 ≥ 0, Ω3 > 0 and σ > 2

3
,

z ∆ < 0, Ω1 > 0, Ω2 > 0, Ω1Ω2 = Ω3 and
σ ∈ (0, 1].

4.4 Global stability analysis
In this section, the global stability of the interior
equilibrium E∗(S∗, I∗, P ∗) is investigated through
the following theorem.
Theorem 10: Assume that E∗(S∗, I∗, P ∗) is lo-
cally asymptotically stable. If M(0) > 0, then it
is globally asymptotically stable, where −Θ(S) =
− RME1

K(R+S∗) +
RE1B1P

∗

(R+S)(R+S∗)2 − RE1CI∗

S∗2(R+S∗) in the re-
gion Λ =

{
(S, I, P ) : S

S∗ > 1
}
.

Proof: We construct a Lyapunov function in the
following way:

i.e., Vf = k1

{
(S − S∗)− S∗ ln S

S∗

}

+ k2

{
(I − I∗)− I∗ ln I

I∗

}

+ k3

{
(P − P ∗)− P ∗ ln P

P ∗

}
,

where, k1, k2 and k3 are positive constants to be
chosen suitably.
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Taking time derivative of Vf , we get
Cf

t0 D
σ
t Vf (t) = k1

S − S∗

S
Cf

t0 D
σ
t S(t) + k2

I − I∗

I
Cf

t0 D
σ
t I(t) + k3

P − P ∗

P
Cf

t0 D
σ
t P (t)

= k1(S − S∗)

[
M

(
1− S

K

)
−AI + C

I

S
− B1P

R+ S
−D1H

]
+ k2(I − I∗)[AS −B2P − C − F1 −D2H] + k3(P − P ∗)

[
E1B1S

R+ S
+ E2B2I − F2

]
= k1(S − S∗)

[
−M
K

(S − S∗)−A(I − I∗) + C

(
I

S
− I∗

S∗

)
−B1

(
P

R+ S
− P ∗

R+ S∗

)]
+ k2(I − I∗)[A(S − S∗)−B2(P − P ∗)]

+ k3(P − P ∗)

[
E1B1

(
S

R+ S
− S∗

R+ S∗

)
+ E2B2(I − I∗)

]
= −

(
Mk1
K

− B1k1P
∗

(R+ S)(R+ S∗)
+
Ck1I

∗

SS∗

)
(S − S∗)2

+

(
−Mk1

K
−Ak1 +Ak2 +

Ck1
S

)
(S − S∗)(I − I∗)

+ (−B2k2 + E2B2k3)(I − I∗)(P − P ∗)

+

(
− B1k1
R+ S

+
RE1B1k3

(R+ S)(R+ S∗)

)
(S − S∗)(P − P ∗)

≤ −
(
Mk1
K

− B1k1P
∗

(R+ S)(R+ S∗)
+
Ck1I

∗

S∗2

)
(S − S∗)2

+

(
−Mk1

K
−Ak1 +Ak2 +

Ck1
S∗

)
(S − S∗)(I − I∗)

+ (−B2k2 + E2B2k3)(I − I∗)(P − P ∗)

+

(
− B1k1
R+ S

+
RE1B1k3

(R+ S)(R+ S∗)

)
(S − S∗)(P − P ∗) where S

S∗ > 1

Now, taking k1 =
RE1

R+ S∗ , k2 = E2, k3 = 1 and with the relation k1
(
M

K
+A− C

S∗

)
= Ak2.

Therefore, we have
Cf

t0 D
σ
t Vf (t) ≤ −

(
Mk1
K

− B1k1P
∗

(R+ S)(R+ S∗)
+
Ck1I

∗

S∗2

)
(S − S∗)2

= −
(

RME1

K(R+ S∗)
− RE1B1P

∗

(R+ S)(R+ S∗)2
+

RE1CI
∗

S∗2(R+ S∗)

)
(S − S∗)2

= −Θ(S)(S − S∗)2

where, −Θ(S) = − RME1

K(R+ S∗)
+

RE1B1P
∗

(R+ S)(R+ S∗)2
− RE1CI

∗

S∗2(R+ S∗)

≤ − arc1
K(a+ S∗)

+
c1p1P

∗

(a+ S∗)2
− ac1βI

∗

S∗2(a+ S∗)

= −Θ(0)

Thus, if Θ(0) > 0, then Cf

t0 D
σ
t Vf (t) ≤ 0.

Therefore, E∗(S∗, I∗, P ∗) is globally asymptotically stable.
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5. Numerical Simulations
Numerical simulations have been executed with
the help of modified Predictor–corrector method
[33, 34] in MATLAB R2014a software package. To
perform the numerical simulations of the system
(4), the parametric values are considered as M =
2.0, K = 50, R = 0.2, B1 = 0.3, B2 = 0.6, F1 =
0.18, F2 = 0.22, E1 = 0.4, E2 = 0.15, C = 0.01,
D1 = 2, D2 = 2, A ∈ (0.1, 0.9), H ∈ (0, 0.8) and
order of the fractional differentiation σ ∈ (0, 1].
To draw the Fig. 2–Fig. 5, we use the values of
parameter M = 2.0, K = 50, R = 0.2, B1 = 0.3,
B2 = 0.6, F1 = 0.18, F2 = 0.22, E1 = 0.4,
E2 = 0.15, C = 0.01, D1 = 2, D2 = 2 and
A = 0.8 in the absence of harvesting effort, i.e.,
H = 0.0. For Fig. 2 and Fig. 3, we use or-
der of the fractional differentiation σ = 0.99 and

σ = 0.85 with the initial condition (S0, I0, P0) =
(2, 0.5, 1). In both cases we see that stable so-
lution curves but it converges to different equi-
librium point, which are E∗ = (17.56, 1.92, 23.48)
and E∗ = (16.85, 1.93, 22.72) respectively. Fig. 4
represents the variation in population curves for
three different values of σ. Blue lines, green lines
and red lines indicate the population curves for
σ = 0.99, σ = 0.85 and σ = 0.45 respectively.
Fig. 5 represents the three dimensional phase por-
trait for σ = 0.99 and H = 0.0 with three differ-
ent initial conditions. Blue line, green line and
red line indicates the population curves for ini-
tial conditions I1 = (12, 5, 8), I2 = (6, 2, 6) and
I3 = (2, 0.5, 1) respectively. For the Fig. 5, it
can be concluded that the system (4) is globally
asymptotically stable for σ = 0.99 and H = 0.0.

Fig. 2. Time series and phase portrait of the system (4) around E∗ = (17.56, 1.92, 23.48) for σ = 0.99
and H = 0.0.

Fig. 3. Time series and phase portrait of the system (4) around E∗ = (16.85, 1.93, 22.72) for σ = 0.85
and H = 0.0.
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Fig. 4. Time series plot of the system (4) at H = 0.0 for different values of σ: (a) σ = 0.99 (blue line),
(b) σ = 0.85 (red line) and (c) σ = 0.45 (green line).

Fig. 5. Three dimensional phase portrait of the system (4) at H = 0.0 for different initial conditions
I1 = (12, 5, 8) (blue line), I2 = (6, 2, 6) (red line) and I3 = (2, 0.5, 1) (green line).

To draw the Fig. 6–Fig. 9, we use the values of
parameter M = 2.0, K = 50, R = 0.2, B1 = 0.3,
B2 = 0.6, F1 = 0.18, F2 = 0.22, E1 = 0.4,
E2 = 0.15, C = 0.01, D1 = 2, D2 = 2 and A = 0.3
in the presence of harvesting effort, i.e., H = 0.4.
For Fig. 6 and Fig. 7, we use order of the frac-
tional differentiation σ = 0.99 and σ = 0.85 with
the initial condition (S0, I0, P0) = (2, 0.5, 1). In
both cases we see that stable solution curves and

it converges to the almost same equilibrium point,
which is E∗ = (17.22, 1.55, 7.68). Fig. 8 repre-
sents the variation in population curves for three
different values of σ. Blue lines, green lines and
red lines indicate the population curves for σ =
0.99, σ = 0.85 and σ = 0.45 respectively. From
this figure, the variation in population curve and
equilibrium point is clearly visible for σ = 0.45.
Fig. 9 represents the three dimensional phase por-
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trait for σ = 0.99 and H = 0.4 with three differ-
ent initial conditions. Blue line, green line and
red line indicates the population curves for ini-
tial conditions I1 = (12, 5, 8), I2 = (6, 2, 6) and

I3 = (2, 0.5, 1) respectively. For the Fig. 9, it
can be concluded that the system (4) is globally
asymptotically stable for σ = 0.99 and H = 0.4.

Fig. 6. Time series and phase portrait of the system (4) around E∗ = (17.56, 1.92, 23.48) for σ = 0.99
and H = 0.4.

Fig. 7. Time series and phase portrait of the system (4) around E∗ = (16.85, 1.93, 22.72) for σ = 0.85
and H = 0.4.
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Fig. 8. Time series plot of the system (4) at H = 0.4 for different values of σ: (a) σ = 0.99 (blue line),
(b) σ = 0.85 (red line) and (c) σ = 0.45 (green line).

Fig. 9. Three dimensional phase portrait of the system (4) at H = 0.4 for different initial conditions
I1 = (12, 5, 8) (blue line), I2 = (6, 2, 6) (red line) and I3 = (2, 0.5, 1) (green line).

To draw the Fig. 10–Fig. 12, we use the values of
parameter M = 2.0, K = 50, R = 0.2, B1 = 0.3,
B2 = 0.6, F1 = 0.18, F2 = 0.22, E1 = 0.4,
E2 = 0.15, C = 0.01, D1 = 2, D2 = 2 and A = 0.3

with the initial condition (S0, I0, P0) = (2, 0.5, 1).
Fig. 10, Fig. 11 and Fig. 12 represent the time se-
ries plot and phase portrait for the different values
of H at σ = 0.99, σ = 0.85 and σ = 0.45 respec-
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tively. Blue lines, green lines and red lines indi-
cate the population curves for H = 0.6, H = 0.4
and H = 0.2 respectively. From these figures it is

clearly visible that as harvesting effort increases,
population of the susceptible prey, infected prey
and predator decreases.

Fig. 10. Time series plot and phase portrait of the system (4) at σ = 0.99 for different values of H.

Fig. 11. Time series plot and phase portrait of the system (4) at σ = 0.85 for different values of H.
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Fig. 12. Time series plot and phase portrait of the system (4) at σ = 0.45 for different values of H.

Conclusions

In this paper, an eco–epidemic prey–predator
model with two stages of prey population and one
stage of predator population is considered. As
infection spreads through prey, the prey popula-
tion is divided into two parts. Predator consumes
susceptible prey and infected prey with Holling
type-I and Holling type-II functional response re-
spectively. In addition, we exploit the effect of
harvesting to control the excessive spread of the
infection. In addition, the fractional order deriva-
tive is utilized rather using ordinary differential
equation. Therefore, the prey–predator ordinary
differential equation system turns into a fractional
order prey–predator system.
In the theoretical section, we investigate the ex-
istence and uniqueness of the solutions, non-
negativity and boundedness which indicates that
the solution of the system are non-negative and
bounded uniformly if E2 < E1. The existence and
local stability of five equilibrium points namely,
the trivial equilibrium, the boundary or axial equi-
librium, the infection free equilibrium, the preda-
tor free equilibrium and the interior equilibrium
are investigated. We also examine the global sta-
bility condition at the interior equilibrium point
of the fractional order prey-predator system. Nu-
merical simulation is presented by the process

based on the predictor-corrector PECE method
of Adams-Bashforth-Moulton scheme. We use the
solver function FDE12 to solve non-linear differ-
ential equation of fractional order (FDE). We see
that the fractional order mathematical model can
be useful to understand the system dynamics with
working memory. From this study, we also ob-
serve that for the different values of the fractional
derivative, the dynamics of the model such as equi-
librium points, stability etc. can vary. These stud-
ies suggest that for increment of harvesting effort
population of the species i.e., susceptible prey, in-
fected prey and predator decreases. Therefore, to
control the infection, selective harvesting is one of
the biological and essential methods.

Due to lack of sufficient theoretical progress in
fractional order calculus, it is very hard to find an
exact solution of the fractional order mathemat-
ical model. Advanced numerical tools are neces-
sary to simulate the fractional order model per-
fectly. Hopefully, we overcome these limitations
in near future. As a future scope, one can ex-
plore the fractional order calculus in different im-
precise environments, such as fuzzy environment,
intuitionistic fuzzy environment, stochastic envi-
ronment etc. In addition, this model can be ex-
tended to an eco-epidemic delay fractional order
mathematical model.
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