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Abstract 
The prime concern of this paper is to derive the bi-
complex analogue of the existence theorem of fixed 
points of order one of entire functions. We discuss 
some lemmas and prove the existence of an entire 
function 𝑓(𝑧) in  ℂ2 which has the given fixed points 
𝑎1, 𝑎2, ⋯ with given multipliers 𝑏1, 𝑏2, ⋯ 
respectively, provided that the sequence {𝑎𝑛} has no 
finite limit point in ℂ2. Finally, we give some 
examples having different kind of fixed points. 
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1. Introduction 

The theory of bi-complex numbers is a matter of 
active research for quite a long time since the 
seminal work of Segre [5] in search of special 
algebra. The algebra of bi-complex numbers are 
widely used in the literature as it becomes a viable 
commutative alternative ([3], [4], [7], [8]) to the 
non-commutative skew field of quaternions 
introduced by Hamilton [3] (both are four-
dimensional and generalization of complex 
numbers). We denote the complex plane by ℂ1 
throughout the paper. Consider two ℂ1 functions 
𝑢, 𝑣 from ℝ2  =  {(𝑥1, 𝑥2) ∶  𝑥1, 𝑥2 ∈ ℝ} to ℝ. It is well 
known that if these two functions satisfy the so 

called Cauchy-Riemann system 
𝜕𝑢

𝜕𝑥1
=

𝜕𝑣

𝜕𝑥2 
,

𝜕𝑢

𝜕𝑥2 
=

−
𝜕𝑣

𝜕𝑥1 
  then the function 𝑓(𝑥1 + 𝑖𝑥2) = 𝑢(𝑥1, 𝑥2) +

 𝑖𝑣(𝑥1, 𝑥2) admits complex derivative. There are 
different ways to attempt to generalize this 
observation to the case of more pairs of real 
variables. To this purpose, we propose to 
complexify the Cauchy-Riemann system and to  
apply it two pairs of holomorphic functions 𝑢, 𝑣 
from ℂ2 = {(𝑧1, 𝑧2) ∶  𝑧1, 𝑧2  ∈ ℂ1} to ℂ1 so that the 
pair (𝑢, 𝑣) can be interpreted as a map of ℂ2 to itself. 
It is then to think whether it makes any sense to 
consider the pairs (𝑢, 𝑣) for which the following 

system is satisfied: 
𝜕𝑢

𝜕𝑧1 
=

𝜕𝑣

𝜕𝑧2 
,

𝜕𝑢

𝜕𝑧2  
= −

𝜕𝑣

𝜕𝑧1  
.  

 

Formally, we have replaced ℝ by ℂ1 and 
differentiability in the real sense by holomorphicity. 

As it turns out, it is possible to give a very 
interesting interpretation of this complexified 
Cauchy-Riemann system, if we endow the pair 
(𝑧1, 𝑧2) with a special algebraic structure. Instead of 
considering (𝑧1, 𝑧2) as a point in ℂ2, we now 
consider in analogy with what we did in the case of 
ℝ2, a new space where the elements are of the form 
𝑧 =  𝑧1 +  𝑗𝑧2, where 𝑗 is a new imaginary unit (i.e., 
𝑗2 = −1), which commuted with the original 
imaginary unit 𝑖. This creates a new algebra, the 
algebra of bi-complex numbers, defined by ℂ2 =
 {𝑧 =  𝑧1  +  𝑗𝑧2 ∶  𝑧1, 𝑧2  ∈  ℂ1} and as we will discuss 
in the next part of this paper, such an algebra enjoys 
most of the properties one would expect from a 
good generalization of the field of complex 
numbers. A bicomplex number is defined as 𝑧 =
 𝑥0  +  𝑖𝑥1  +  𝑗𝑥2 +  𝑖𝑗𝑥3, where 𝑥0, 𝑥1, 𝑥2, 𝑥3 are real 
numbers with 𝑖2 =  𝑗2 = −1  and 𝑖𝑗 =  𝑗𝑖, (𝑖𝑗)2 = 1, 
ℂ2 becomes a real commutative algebra with 
identity 1 =  1 +  𝑖0 +  𝑗0 +  𝑖𝑗0, with standard 
binary composition.  
So we can say that the bi-complex numbers are 
complex numbers with complex coefficients, which 
explains the name of bi-complex numbers. 
 
Definition 1.1 Given a bi-complex number 𝑧 =
 𝑧1 +  𝑗𝑧2, its bi-complex conjugate is defined by 
𝑧′  =  𝑧1 − 𝑗𝑧2. 
 We immediately note that 𝑧𝑧′ =  𝑧1

2 + 𝑧2
2 ∈ ℂ1. So in 

particular we can say that a bi-complex number 𝑧 =
 𝑧1 +  𝑗𝑧2 is invertible if and only if 𝑧1

2  +  𝑧2
2 ≠ 0 and 

the inverse of 𝑧 is given by 𝑧−1 =
𝑧′

𝑧1
2  + 𝑧2

2 . If both 

𝑧1, 𝑧2 are nonzero but the sum 𝑧1
2  +  𝑧2

2 is zero, then 
the corresponding bi-complex number 𝑧 =  𝑧1 +
 𝑗𝑧2 is a zero divisor. In fact, all zero divisors in 
ℂ2 are characterized by the equations 𝑧1

2 =  −𝑧2
2 i.e., 

𝑧1 = ±𝑖𝑧2. Thus, all zero divisors are of the form 𝑧 =
 𝜆(1 ±  𝑖𝑗), where 𝜆 ∈ ℂ ∖ {0}. The following  
definitions are immediate from the above 
discussion: 
 
Definition 1.2 There are two non trivial 

elements 𝑒1 =
1+𝑖𝑗

2
 and 𝑒2 =

1−𝑖𝑗

2
 in ℂ2 with the 

properties 𝑒1
2 = 𝑒1, 𝑒2

2 = 𝑒2, 𝑒1 𝑒2 = 𝑒2𝑒1 = 0 and 
𝑒1 + 𝑒2 = 1 which are called the idempotent 
elements in ℂ2. 
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Definition 1.3 Any bi-complex number 𝑧 =  𝑧1 +
𝑗𝑧2 can be written as 𝑧 = 𝛼𝑒2 + 𝛽𝑒2 where 𝛼 =
 𝑧1 − 𝑖𝑧2 and 𝛽 = 𝑧1 + 𝑖𝑧2 are uniquely defined 
complex numbers. This is known as the 
idempotent representation of 𝑧. 
These results a pair of mutually complementary 
projections: 𝑃1: (𝑧1 +  𝑗𝑧2) ∈ ℂ2 ↦ (𝑧1 −  𝑗𝑧1) ∈ ℂ1 
and 𝑃2 ∶ (𝑧1 + 𝑗𝑧2) ∈ ℂ2 ↦ (𝑧1 + 𝑗𝑧1) ∈ ℂ1. 
 
Definition 1.4  An element 𝑧 =  𝑧1 + 𝑗𝑧2 is 
singular if and only if |𝑧1

2 + 𝑧2
2| = 0. The set of 

singular elements is denoted as 𝑂2 and is defined 
by 𝑂2 = {𝑧 ∈ ℂ2: 𝑧 is the collection of all complex 
multiple of 𝑒1 and 𝑒2}. 
 
Definition 1.5 The norm ∥. ∥∶ ℂ2 ↦ ℝ+ ∪ {0} of a 
bi-complex number is defined as ∥ 𝑧 ∥ =

√{|𝑧1
2| + |𝑧2

2|}   = √𝑥0
2 +  𝑥1

2 + 𝑥2
2 + 𝑥3

2. 
 

1.1 Bi-complex function  

We start with a bi-complex valued function 𝑓 ∶  𝛺 ⊂
ℂ2 → ℂ2. The derivative of 𝑓 at a point 𝑧0 ∈ 𝛺 is 

defined by 𝑓′(𝑧0) = lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
 provided the 

limit exists and the domain is so chosen that ℎ =
 ℎ0 + 𝑖ℎ1 + 𝑗ℎ2 + 𝑖𝑗ℎ3 is invertible. It is easy to prove 
that h is not invertible only for ℎ0 = −ℎ3, ℎ1 = ℎ2 or 
ℎ0 = ℎ3, ℎ1 = −ℎ2. If the bi-complex derivative of 𝑓 
exists at each point of its domain 𝛺 then in similar 
to complex function, 𝑓 will be a bi-complex 
holomorphic function in 𝛺. Indeed, if 𝑓 can be 
expressed as 𝑓(𝑧) =  𝑔1(𝑧1, 𝑧2) + 𝑗𝑔2(𝑧1, 𝑧2), where 
𝑧 = 𝑧1 + 𝑗𝑧2 ∈ 𝛺, then 𝑓 will be holomorphic if and 
only if 𝑔1, 𝑔2 are both complex holomorphic in 𝑧1, 𝑧2  

and 
𝜕𝑔1

𝜕𝑧1
=

𝜕𝑔2

𝜕𝑧2
,

𝜕𝑔1

𝜕𝑧2
= −

𝜕𝑔2

𝜕𝑧1
. Moreover, 𝑓′(𝑧) =

𝜕𝑔1

𝜕𝑧2
+

 𝑗
𝜕𝑔2

𝜕𝑧1
 and it is invertible only when det(

𝜕𝑔1

𝜕𝑧1

𝜕𝑔1

𝜕𝑧2

𝜕𝑔2

𝜕𝑧1

𝜕𝑔2

𝜕𝑧2

) ≠

0. Let 𝑓: 𝑋 → ℂ2 where 𝑋 ⊆ ℂ2 be a bi-complex 
valued holomorphic function. Now the fixed points 
of 𝑓(𝑧) are the points 𝑧′ for which 𝑓(𝑧′)  =  𝑧′. Now, 
since 𝑓(𝑧) is bi-complex valued, so 𝑓(𝑧) =
 𝑓1(𝛼)𝑒1 + 𝑓2(𝛽)𝑒2, where 𝛼 = 𝑧1 − 𝑖𝑧2, 𝛽 = 𝑧1 + 𝑖𝑧2 
and 𝑧 = 𝛼𝑒1 + 𝛽𝑒2 = 𝑧1 + 𝑗𝑧2. Now, 𝑓(𝑧′) = 𝑧′ 
implies that 𝑓1(𝛼′)𝑒1 + 𝑓2(𝛽′)𝑒2 = 𝛼′𝑒1 + 𝛽′𝑒2. This 
gives us that, 𝑓1(𝛼′) = 𝛼′ and 𝑓2(𝛽′) = 𝛽′. So, the 
fixed points of 𝑓(𝑧) implies the fixed points of 𝑓1 and 
𝑓2 at some points, where 𝑓1 and 𝑓2 are complex 
valued functions. The existence and distribution of 
the fixed points of entire functions 𝑓(𝑧) of the bi-
complex variable 𝑧 are important in the study of 
iteration of these functions.  
 

Definition 1.6 The number 𝑓′(𝑧′) ≡
𝑑

𝑑𝑧
𝑓(𝑧) at 𝑧 =

𝑧′ is called the multiplier of 𝑧′. 
For integral 𝑛 >  0, the iterates of 𝑓(𝑧) are defined 
by, 𝑧1 = 𝑓(𝑧), 𝑧𝑛 = 𝑓(𝑧𝑛−1) = 𝑓𝑛(𝑧) = 𝑓𝑛−1(𝑓(𝑧)). 
Thus, 𝑧1 = 𝑓(𝑧) = (𝑓1𝑒1 + 𝑓2𝑒2)(𝑧) = (𝑓1𝑒1 + 𝑓2𝑒2) 

(𝛼𝑒1 + 𝛽𝑒2) =  𝑓1(𝛼)𝑒1 + 𝑓2(𝛽)𝑒2 and 𝑧2 = 𝑓(𝑧1) =
 𝑓(𝑓(𝑧)) = 𝑓2(𝑧) = (𝑓1𝑒1 + 𝑓2𝑒2)((𝑓1𝑒1 + 2𝑒2)(𝛼𝑒1 +
 𝛽𝑒2)) = (𝑓1

2𝑒1 + 𝑓2
2𝑒2)(𝛼𝑒1 + 𝛽𝑒2) = 𝑓1

2(𝛼)𝑒1 +
𝑓2

2(𝛽)𝑒2. Similarly, 𝑧𝑛 = 𝑓(𝑧𝑛−1) = 𝑓1
𝑛 (𝛼)𝑒1 +

 𝑓2
𝑛(𝛽)𝑒2. Thus iterates of positive integral order of 

entire functions satisfying the functional equations: 

𝑓𝑚(𝑓𝑛(𝑧)) =  𝑓𝑛(𝑓𝑚(𝑧)) = 𝑓𝑚+𝑛(𝑧).                     (1) 

 
Definition 1.7  For integral 𝑝 > 0, the fixed points 
of order 𝑝 of 𝑓(𝑧) are those points 𝑧′ for which 

𝑓𝑝(𝑧′) = 𝑧′ where, 𝑓𝑘(𝑧′) ≠ 𝑧′ for 𝑘 < 𝑝. 
Thus fixed points of order one of 𝑓(𝑧) are those 
points 𝑧′ for which 𝑓1(𝑧′) ≡ 𝑓(𝑧′) = 𝑧′, which is 
already defined. Next we classify fixed points of 
order 𝑝 of 𝑓(𝑧) in the following manner and the 
following definition is immediate: 
 
Definition 1.8 The fixed points of order 𝑝(𝑝 > 0 
being an integer) of 𝑓(𝑧) are classified as 
attractive, indifferent or repulsive according as 
their modulii of multipliers 𝑓𝑝

′(𝑧′) are < 1, = 1 or >

1. 
In this paper our main target is to establish the 
existence theorem of fixed points of order one of 
entire function under the flavour of bi-complex 
analysis. We do not explain the standard theories, 
definitions and notations of bi-complex analysis as 
those are available in [2], [3], [4], [5], [6]. 
 

2. Some lemmas 

In this section we present some lemmas which will 
be needed in the sequel. 
 

Lemma 2.1 If  {𝑧𝑛} is an arbitrary sequence of 

complex numbers different from zero and whose 

sole limit point is ∞ and if 𝑚 is a non negative 

integer, then there exist an entire function 𝐺(𝑧) 

having roots at the points 𝑧1, 𝑧2,· · · (and these 

points only) and a root of multiplicity 𝑚 at the 

point zero. Further, 𝐺(𝑧) can be defined by the 

absolutely uniformly convergent product 

𝐺(𝑧) = 𝑒𝑔(𝑧)𝑧𝑚 ∏ (1 −
𝑧

𝑧𝑛

)

∞

𝑛=1

𝑒
𝑄𝑣(

𝑧
𝑧𝑛

)
, 

where 𝑒𝑔(𝑧) is an arbitrary entire function and 

𝑄𝜈(𝑧) is a polynomial such that 

𝑄𝜈(𝑧)  =  𝑧 +
𝑧2

2
+ · · ·  +

𝑧𝜈

𝜈
. 

The non negative integer 𝜈 has the property that 

the series ∑
1

|𝑧𝑛|𝜈+1 

∞
𝑛=1  converges uniformly in the 

whole complex plane. 

 

Remark 2.1  Lemma 2.1 is known as Weierstrass’s 

factorization theorem of entire functions in the 

theory of complex analysis. 

The next lemma is the bi-complex analogue of 

Lemma 2.1. 
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Lemma 2.2 [1] Let 𝑧1, 𝑧2, 𝑧3, … be any sequence of 

bi-complex numbers and infinity be the only limit 

point of it. Then it is possible to construct an entire 

function of bi-complex variable which vanishes at 

each of these points 𝑧𝑛. 

 

3. Main results 

In this section, we present the main result of the 

paper. The following theorem ensures the existence 

of fixed points of order one of a bi-complex valued 

function. 

 

Theorem 3.1 There exists an entire function 𝑓(𝑧) 

in ℂ2 which has the given fixed points 𝑎1, 𝑎2, … with 

given multipliers 𝑏1, 𝑏2, … respectively, provided 

that the sequence {𝑎𝑛} has no finite limit point in 

ℂ2. 

 

Proof. Since 𝑓(𝑧) is a bi-complex valued function, 

therefore 𝑓(𝑧) can be expressed as 𝑓(𝑧) =  𝑓1(𝛼)𝑒1 +

 𝑓2(𝛽)𝑒2 where 𝑧 = 𝛼𝑒1 + 𝛽𝑒2. Also, 𝑎𝑖 and 𝑏𝑖 for 𝑖 =

 1, 2, 3, … are all bi-complex numbers, therefore 𝑎𝑖 =

 𝑎𝑖
′𝑒1 + 𝑎𝑖

′′𝑒2 and 𝑏𝑖 = 𝑏𝑖
′𝑒1 + 𝑏𝑖

′′𝑒2 for 𝑖 = 1, 2, … . 

First let ℎ(𝑧) be an entire function whose zeros are 

precisely the points an and such that 𝑎𝑛 is a simple 

zero if 𝑏𝑛 ≠ 1 and a double zero if 𝑏𝑛 = 1 so that, 

ℎ′(𝑎𝑛) ≠ 0 if 𝑏𝑛 ≠ 1 while ℎ′(𝑎𝑛) = 0 if 𝑏𝑛 = 1. Now, 

ℎ(𝑎𝑛) = 0 implies that ℎ(𝑎𝑛
′ 𝑒1 + 𝑎𝑛

′′𝑒2) = 0. That is 

ℎ1(𝑎𝑛
′ )𝑒1 + ℎ2(𝑎𝑛

′′)𝑒2 = 0 = 0𝑒1 + 0𝑒2. Again this 

implies ℎ1(𝑎𝑛
′ ) = 0 and ℎ2(𝑎𝑛

′′) = 0. So what we 

need to prove is 𝑓′(𝑎𝑛) = 𝑏𝑛 if 𝑏𝑛 ≠ 1. That is 

𝑓1
′(𝑎𝑛

′ )𝑒1 + 𝑓2
′(𝑎𝑛

′′)𝑒2 = 𝑏𝑛
′ 𝑒1 + 𝑏𝑛

′′𝑒2 if 𝑏𝑛
′ 𝑒1 + 𝑏𝑛

′′𝑒2 ≠

1 = 𝑒1 + 𝑒2. This implies 𝑓1
′(𝑎𝑛

′ ) = 𝑏𝑛
′ , 𝑓2

′(𝑎𝑛
′′)𝑏𝑛

′′ if 

𝑏𝑛
′ ≠ 1, 𝑏𝑛

′′ ≠ 1. Also we need to prove 𝑓′(𝑎𝑛) = 1 if 

𝑏𝑛 = 1. That is 𝑓1
′(𝑎𝑛

′ )𝑒1 + 𝑓2
′(𝑎𝑛

′′)𝑒2 = 𝑒1 + 𝑒2 if 

𝑏𝑛
′ 𝑒1 + 𝑏𝑛

′′𝑒2 = 1 =  𝑒1 + 𝑒2. This implies that 

𝑓1
′(𝑎𝑛

′ ) = 1, 𝑓2
′(𝑎𝑛

′′) = 1 if 𝑏𝑛
′ = 1, 𝑏𝑛

′′ = 1. As the 

existence of fixed points of order one of 𝑓 implies 

the same for 𝑓1 and 𝑓2 so ℎ(𝑧) = ℎ1(𝛼)𝑒1 + ℎ2(𝛽)𝑒2 

may be constructed by Weierstrass’s factorization 

theorem for entire functions. Let 𝑘(𝑧) = 𝑘1(𝛼)𝑒1 +

𝑘2(𝛽)𝑒2 be an bi-complex valued entire function 

such that 

               𝑘1(𝑎𝑛
′ ) = log [

𝑏𝑛
′ −1

ℎ1
′ (𝑎𝑛

′ )
] if 𝑏𝑛

′ ≠ 1 

                             =  1 if 𝑏𝑛
′ = 1 

and 

               𝑘2(𝑎𝑛
′′) = log [

𝑏𝑛
′′−1

ℎ1
′ (𝑎𝑛

′′)
] if 𝑏𝑛

′′ ≠ 1 

                             =  1 if 𝑏𝑛
′ = 1 

where any determination of the logarithm may be 

taken. Now let us put 𝑓1(𝛼) = 𝛼 + ℎ1(𝛼) 𝑒𝑥𝑝{𝑘1(𝛼)} 

and 𝑓2(𝛽) = 𝛽 + ℎ2(𝛽) 𝑒𝑥𝑝{𝑘2(𝛽)}. 

Clearly, the fixed points of 𝑓1(𝛼) and 𝑓2(𝛽) are the 

zeros of ℎ1(𝛼) and ℎ2(𝛽) respectively. Let us now 

examine the multipliers of 𝑎𝑛
′  and 𝑎𝑛

′′. We have 

𝑓1
′(𝛼) = 1 + ℎ1

′ (𝛼) 𝑒𝑥𝑝{𝑘1(𝛼)} + ℎ1(𝛼)𝑒𝑥𝑝{𝑘1(𝛼)} 

𝑘1
′ (𝛼). This gives that 𝑓1

′(𝑎𝑛
′ ) = 1 +

ℎ1
′ (𝑎𝑛

′ ) 𝑒𝑥𝑝{𝑘1(𝑎𝑛
′ )} + ℎ1(𝑎𝑛

′ ) 𝑒𝑥𝑝{𝑘1(𝑎𝑛
′ )}𝑘1

′ (𝑎𝑛
′ ). 

Similarly 𝑓1
′(𝑎𝑛

′′) = 1 + ℎ1
′ (𝑎𝑛

′′)𝑒𝑥𝑝{𝑘1(𝑎𝑛
′′)} + ℎ1(𝑎𝑛

′′) 

𝑒𝑥𝑝{𝑘1(𝑎𝑛
′′)}𝑘1

′ (𝑎𝑛
′′). So, if 𝑏𝑛 ≠ 1, i.e., 𝑏𝑛

′ ≠ 1 and 

𝑏𝑛
′′ ≠ 1, we have, 

𝑓1
′(𝑎𝑛

′ ) = 1 + ℎ1
′ (𝑎𝑛

′ ) [
𝑏𝑛

′ − 1

ℎ1
′ (𝑎𝑛

′ )
] + 0 [

𝑏𝑛
′ − 1

ℎ1
′ (𝑎𝑛

′ )
] 𝑘1

′ (𝑎𝑛
′ ) 

                =  𝑏𝑛
′ ,  since, ℎ1

′ (𝑎𝑛
′ ) ≠ 0.  

Like wise 𝑓2
′(𝑎𝑛

′′) = 𝑏𝑛
′′. Again if 𝑏𝑛 = 1, we have, 

𝑓1
′(𝑎𝑛

′ ) = 1 + ℎ1
′ (𝑎𝑛

′ )0 + 0 𝑒𝑥𝑝{𝑘1(𝑎𝑛
′ )} = 1, since 

ℎ1
′ (𝑎𝑛

′ ) = 0. In a like manner 𝑓2
′(𝑎𝑛

′′) = 1. Therefore, 

the multiplier of 𝑎𝑛 is 

𝑓′(𝑎𝑛) = (𝑓1
′𝑒1 + 𝑓2

′𝑒2)(𝑎𝑛) 

                   = 𝑓1
′(𝑎𝑛

′ )𝑒1 + 𝑓2
′(𝑎𝑛

′′)𝑒2 

                                      = 𝑏𝑛
′ 𝑒1 + 𝑏𝑛

′′𝑒2, if 𝑏𝑛
′ , 𝑏𝑛

′′ ≠ 1 

                                      =  𝑏𝑛 

and 

𝑓′(𝑎𝑛) = (𝑓1
′𝑒1 + 𝑓2

′𝑒2)(𝑎𝑛) 

                   = 𝑓1
′(𝑎𝑛

′ )𝑒1 + 𝑓2
′(𝑎𝑛

′′)𝑒2 

                                      = 𝑒1 + 𝑒2, if 𝑏𝑛
′ , 𝑏𝑛

′′ = 1 

                                      =1. 

Hence, 

𝑓′(𝑎𝑛) = 𝑏𝑛, if 𝑏𝑛 ≠ 1 

=  1, if 𝑏𝑛 = 1. 

This proves the theorem. ∎ 

 

Remark 3.1 The converse of Theorem 3.1 is not 

true, which is evident from the following example. 

Let 𝑓(𝑧) = 𝑒𝑧 + 𝑧 then 𝑒𝑧 + 𝑧 = 𝑧 implies 𝑒𝑧 = 0, 

which is impossible. Hence, 𝑒𝑧 + 𝑧 has no fixed 

point. 
 

Remark 3.2 Consider the function 

𝑓(𝑧) = 𝑧 − [𝑔(𝑧)]2, 

where 𝑔(𝑧) is an entire function having infinitely 

many zeros. It can be shown that 𝑓(𝑧) has no 

attractive fixed point, an infinite number of 

indifferent fixed points at the zeros of 𝑔(𝑧) and no  

repulsive fixed point. 

 

Remark 3.3 If we take the function 

𝑓(𝑧) = 𝑧 + 𝑧𝑒𝑧 , 

we see that, 𝑓(𝑧) has one repulsive fixed point at 

𝑧 =  0 with multiplier 2 and no attractive or 

indifferent fixed point. 

 

Future scope: In the line of Theorem 3.1, one may 

think of the derivation of existence of fixed points of 

order 𝑝 (𝑝 > 0, being an integer) of a bicomplex 

valued entire function which may be considered as 

an open problem in this area. 
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