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Rapidly spreading disease, COVID-19 is classified as the human-to-human transmissionable disease
and currently it becomes a pandemic in the Globe. In this paper, we propose the conceptual
mathematical model and analyze a Susceptible-Exposed-Infected-Quarantined or Isolated-Recovered-
Susceptible (SEIRUS) type infectious disease model with imprecise parameters. We have divided the
model formulation portion into four subsections. They are namely crisp SEIRUS model, interval
SEIRUS model and fuzzy SEIRUS model. The existence condition and boundedness of the solution
to our proposed model have been discussed. The asymptotical stability of the system at different
equilibrium point is investigated. Also we have explained the global stability at endemic equilibrium
point. Application of optimal control of the system is described and solved. Finally, some numerical
results have been shown to test the theoretical study of the model. We observed that the population
is greatly influenced for the imprecise nature of parameters.

Key words: COVID-19 coronavirus, SEIRUS model, imprecise parameter, Reproduction number, Sta-
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Background
The emersion of infectious disease is important
factors that cause the mortality of human and an-
imal as well as social and economic breakdown
[10, 32, 49]. Infectious disease can govern the
population size, population dynamics [27, 45],
and their host population [1, 13, 15, 37]. In
the field of epidemiological mathematics we mea-
sure the investigation by Murray [33] and Heth-
cote [14] as pathfinder. Epidemics affected the
world the Zika virus outbreak in Brazil in 2014,
Ebola outbreak in West Africa in 2014–2016, HIV
in West Africa in late 20th century, American
Plagues in 16th century, Great Plague of London
around 1665-1666, Russian plague around 1770–
1772, Philadelphia yellow fever epidemic in 1793,
outbreak of Black Death in London around 1665–
1666, plague in Mumbai in 1906. Some studies [29,
42, 44] described logistic growth model. The dis-
ease dynamics of tuberculosis with non local con-
formable derivative have been discussed by Khan
and Gomez-Aguilar [22]. Hospital transmission is
main issue in epidemic syndrome which has been
studied by Riley et al. [43] in their work. Many
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researchers considered that the process of repro-
duction of epidemic caused by virus is prime issue
[30]. Chavez et al.[6] have studied mathematical
models for disease dynamics of tuberculosis. The
construction of next generation matrices for epi-
demic model was developed by Diekmann et al. [9].
The dynamics of Zika virus with Lyapunov func-
tion theory was described by some researcher [23].
Khan et al. [24] have described the intercourse of
infected from symptomatic stage to asymptomatic
stage in HIV/AIDS infection. Study by Njankou
et al. [38] is about the optimal control of Ebola
virus disease. They considered three different con-
trol measures such as education campaigns, active
case searching and pharmaceutical interventions.
Main findings The main finding of this work
is to improve new mathematical model, called
SEIRUS model in fuzzy environment. Combining
strict lock down, widespread testing, quarantine
or isolation as precautionary measure is the key of
rapidly ending the COVID-19 pandemic.

1. Introduction
Coronavirus disease was first marked off in Decem-
ber 2019 in Wuhan, China and it has been break-
ing out throughout the world. The symptoms of
the COVID-19 are commonly weariness, fever, dry
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cough. Many patients also give symptoms such as
sore throat, anosmia, ageusia, nausea, vomiting,
diarrhea, shortness of breath, aches, nasal conges-
tion. It is the higher risk for the old patients for
some lethal diseases such as coronary heart dis-
ease, diabetes and hypertension.

COVID-19 which is a contagious disease causes
mainly the respiratory syndrome and transmissi-
ble from human-to-human [3, 18]. At this situa-
tion more than 210 countries and territories have
reported to have coronavirus patients and its in-
fection increase explicatively [26]. The primary
host was found in animals and disposed to humans
[2]. Nesteruk et al. [36] in his SIR (Susceptible-
Infectious-Removed) model suggested the good
values statistically for model parameters. Ming
et al. [34] and Oduwole et al. [39] discussed how
to control the disease through his model. Wu
et al. [50] have displayed a susceptible exposed
infectious recovered model (SEIR) model. The
disease dynamics and its transmission and por-
tending for the national and global disease spread
is the main substance of his work. Tang et al.
[46] has considered in his study with a separated
deterministic model formation with the disease’s
clinical improvement. The epidemic trajectories
on computational modeling with estimation the
size of the spread of the disease in Wuhan is per-
formed by Imai et al. [19]. They have discussed
the diseases transmission from human to human.
Mathematical modeling is broadly used for fore-
casting the results of an epidemic successfully in
the study of epidemiology. SIS, SIR and SEIR
models are mostly common used in the epidemi-
ological research work. The Kermack-Mckendric
SIR model is a very well initiated model and used
largely for various epidemics [25, 48]. We have not
found any visible symptoms to infected individu-
als as for example chicken pox, tuberculosis in any
other cases. In that cases an SEIR model is vastly
used [26]. Khajanchi et al. [21] haveformed the
SAIUQR model. They have explained the fore-
casting the daily and cumulative number of cases
for the COVID 19 pandemic in India. Giordano
et al. [12] have studied on SIDARTHE model.
They have to special emphasis on population test-
ing. It have been suggested that testing is the
most urgent as undetected infected people most
of them asymptomatic and they are huge sustain
the epidemic spread. Also they have explained
for maintaining strict lockdown and to increase
widely testing to the population and contact trac-
ing effort significantly. Pal et al. [41] discussed
COVID-19 epidemic model using data driven epi-

demiological parameters in India. We use uncer-
tainty for the associated parameters uncertain to
form more realistic model. So we may use the un-
certain interval valued parameter. It may help to
inform a real world mathematical system. Zadeh
[51] first used the uncertainty in his mathematical
deduction. The application of Fuzzy set theory
along with interval valued parameters has been
vastly used in various research fields. Mahato et
al. [40] have used the fuzzy in his epidemic model.
They have assumed the fuzzy value of infected
human population and fuzzy basic reproductive
number and taken uncertainty parameters. Re-
searchers paid attention to develop their epidemic
models in uncertain environments [5, 7, 28, 31, 35,
55, 56, 57, 58] such as fuzzy, interval, stochastic,
intuitionistic fuzzy, etc. The reason to consider
the uncertain environment is that in reality data
cannot be collected precisely due to several causes
like fluctuation of environment, changes in the na-
ture of the virus, ambiguous death rate such as
co-morbidity death, uncertainty about the num-
ber of undetected infections etc. To avoid uncer-
tainty and variations, Efimov [11] developed an
interval prediction of COVID-19 based SEIR epi-
demic model.
The paper is embodied as follows: Some useful
definitions are presented in section 2. Mathemat-
ical Model is discussed with elaboration in section
3. Positivity and boundedness of the system, sta-
bility criteria of disease free equilibrium and en-
demic equilibrium are prescribed in the section of
4. Optimality of system of the crisp model is de-
scribed in section 5. Section 6 is accomplished
with the sensitivity analysis of parameters. Some
numerical examples are explained graphically in
section 7. Numerical results with control policies
are investigated in section 8. Finally, section 9
outlines conclusion of the results.

2. Some Useful Definitions
In this section, we give some useful definitions.
These definitions or properties are used through-
out the work. They are defined in the following
way.

2.1 Interval number
The closed interval [p, q] represents an interval
number S and defined as following

S = [p, q] = {x : p ≤ x ≤ q, x ∈ R}

where R is the set of real number and p and q are
the upper and lower limit interval number respec-
tively.
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2.2 Interval valued function
We represent an interval valued function with
parametric form. We define the interval [m,n] by
the following function

f(α) = m1−α · nα, α ∈ [0, 1].

Then the operation (◦) for two interval numbers
can be written as

{(m)1−α(m)α} ◦ {(n)1−α(n)α} = (z)1−α(z)α.

where, z = min{m ◦ n,m ◦ n,m ◦ n,m ◦ n} and
z = max{m ◦ n,m ◦ n,m ◦ n,m ◦ n}

2.3 Fuzzy Number
A fuzzy set Ã is called a fuzzy number with mem-
bership function µÃ(l) if it is normal and convex,
i.e.,

(i) µÃ(l0) = 1 for some l0,

(ii) µÃ(l1+(1−λ)l2) ≤ λµÃ(l1)+(1−λ)µÃ(l2)

2.4 Defuzzification Method
In the year 1999, Chen and Hsieh [8], proposed
a defuzzification method known as graded mean
integral value method and is given by

Df (Ã) =

∫ 1

0

p{(1− q)L−1(p) + qR−1(p)}dp∫ 1

0

pdp

= 2

∫ 1

0

p{(1− q)L−1(p) + qR−1(p)}dp

where, L(p) and R(p) are the left and right shape
functions of the fuzzy number Ã respectively and
q ∈ [0, 1] is the degree of optimism.

2.5 GMIV of Triangular Fuzzy Number
(TFN)

The left and right shape functions of the TFN Ã
are respectively, L(p) = p−a1

a2−a1
and R(p) = a3−p

a3−a2
.

Therefore, L−1(p) = a1+(a2−a1)p and R−1(p) =
a3 − (a3 − a2)p

Now, GMIV of Ã = 2

∫ 1

0

p{(1− q)L−1(p) + qR−1(p)}dp

= 2

∫ 1

0

p{(1− q)[a1 + (a2 − a1)p] + q[a3 − (a3 − a2)p]}dp

= 2

[
(1− q)

{
a2
2

+
(a2 − a1)p

3

}
+ q

{
a3
2

− (a3 − a2)

3

}]
=

1

3
[(1− q)a1 + 2a2 + qa3]

Thus, Df (Ã) =
1

3
[(1− q)a1 + 2a2 + qa3].

If a1 = a2 = a3 = a, then Ã = (a, a, a) reduced to the real number ‘a’.

Fig. 1. The Schematic Diagram of the proposed model

J. Sci. Enq., 2021, 1(1) 103



Mathematical study of COVID-19 outbreak…

3. Model Formulation
3.1 Model 1: Crisp SEIRUS Model
In this paper we formulate and analyze a SEIRUS
type epidemic model. It is assumed that the vari-
ables are S(t), E(t), I(t), R(t), U(t) i.e. number
of the susceptible population, number of the ex-
posed population, number of the infected popula-
tion, number of quarantined or isolated popula-
tion and number of the recovered population re-
spectively at any instant of time t.
We assume that the total recruitment rate of hu-
man population is B. According to the different
form of disease transmission we have considered
the disease transmitted to the susceptible popula-
tion when an infected population comes into con-
tiguity of the susceptible individuals with λ be
the disease transmission rate. Therefore λ SI part
moves on the exposed class from the susceptible
class. We have treated that d is the natural death
rate of all the individuals and Θ be considered the
force of infection in the population, ϵ is the propor-
tion of the infected population in quarantine time
per unit time and φ is to be disease induced death
rate of infected population who are not quaran-
tined or isolated. Again, we assume γ to be disease
induced death rate of infected population who are
quarantined or isolated and σ is the proportion of
observed population and being moved to suscep-
tible class. We also assume that µ is the recovery
rate of the quarantined or isolated population at
any time t. Then the dynamical behavior of this
pandemic caused by the infection and the situa-
tion thereafter can be illustrated by the following
system of nonlinear ordinary differential equation.

dS(t)

dt
= B − λSI − dS + σU

dE(t)

dt
= λSI − dE −ΘE

dI(t)

dt
= ΘE − (d+ ϵ+ φ)I

dR(t)

dt
= ϵI − (d+ µ+ γ)R

dU(t)

dt
= µR− (d+ σ)U (1)

with the condition S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0,
R(t) ≥ 0, U(t) ≥ 0.

3.2 Model 2: Interval SEIRUS Model
For interval approach we do not need any mem-
bership, non membership or probability distribu-
tion function but we can vary the parameters in
some suitable range. For the reason we have used
the interval approach. We treat all parameters
as interval numbers then system of equation (1)
reduces in following form:

d̂S

dt
= B̂ − λ̂SI − d̂S + σ̂U

d̂E

dt
= λSI − d̂E − θ̂E

d̂I

dt
= θ̂E − (d̂+ ϵ̂+ φ̂)

d̂R

dt
= ϵ̂I − (d̂+ µ̂+ γ̂)R

d̂U

dt
= µ̂R− (d̂+ σ̂)U

where, B̂ = [B,B], λ̂ = [λ, λ], d̂ = [d, d], ϵ̂ = [ϵ, ϵ],
σ̂ = [σ, σ], Θ̂ = [Θ,Θ], φ̂ = [φ,φ], µ̂ = [µ, µ],
γ̂ = [γ, γ].

The above equation can be written in parametric
form as follows

dS(t, α)

dt
= (B)1−α(B)α − (λ)1−α(λ)αSI − (d)1−α(d)αS + (σ)1−α(σ)αU

dE(t, α)

dt
= (λ)1−α(λ)αSI − (d)1−α(d)αE − (Θ)1−α(Θ)αE

dI(t, α)

dt
= (Θ)1−α(Θ)αE − [(d)1−α(d)α + (ϵ)1−α(ϵ)α + (φ)1−α(φ)α]I

dR(t, α)

dt
= (ϵ)1−α(ϵ)αI − [(d)1−α(d)α + (µ)1−α(µ)α + (γ)1−α(γ)α]R

dU(t, α)

dt
= (µ)1−α(µ)αR− [(d)1−α(d)α + (σ)1−α(σ)α]U (2)

where α ∈ [0, 1], α depends on the environment.
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3.3 Model 3: Fuzzy SEIRUS Model
In this portion, we consider parameters as fuzzy
number. Then the system of differential equations
given in (1) is transformed into the following sys-
tem of differential equation.

d̃S(t)

dt
= B̃ − λ̃SI − d̃S + σ̃U

d̃E(t)

dt
= λ̃SI − d̃E + θ̃E

d̃I(t)

dt
= θ̃E − (d̃+ ϵ̃+ φ̃)I

d̃R(t)

dt
= ϵ̃I − (d̃+ µ̃+ γ̃)R

d̃U(t)

dt
= µ̃R− (d̃+ σ̃)U (3)

We take all the parameters positive. i.e. B̃ > 0,
λ̃ > 0, d̃ > 0, ϵ̃ > 0, σ̃ > 0, Θ̃ > 0, φ̃ > 0,
µ̃ > 0, γ̃ > 0 and consider them as triangular
fuzzy numbers. With the help of graded mean
integration defuzzification method, we convert the
fuzzy model system of equation in the following
way:

Df

(
d̃S(t)

dt

)
= Df (B̃)

−Df (λ̃)SI −Df (d̃)S +Df (σ̃)U

Df

(
d̃E(t)

dt

)
= Df (λ̃)SI −Df (d̃)E −Df (Θ̃)E

Df

(
d̃I(t)

dt

)
= Df (Θ̃)E − (Df (d̃)

+Df (ϵ̃) +Df (φ̃))I

Df

(
d̃R(t)

dt

)
= Df (ϵ̃)I − (Df (d̃)

+Df (µ̃) +Df (γ̃))R

Df

(
d̃U(t)

dt

)
= Df (µ̃)R− (Df (d̃) +Df (σ̃))U

Here, Df is defuzzification operator and Df ( )’s
the defuzzified/GMIV parameter.

4. Theoretical Study of the Model
Here, we have analyzed the theoretical study of
the proposed dynamic system. We have investi-
gated the positivity, boundedness of the model,
basic reproduction number and the stability crite-
ria of the system.

4.1 Positivity of the model
Theorem 1: Solutions of the model (1) are non
negative starting from R5

+.
Proof: With the help of crisp model (1), we have

dS(t)

dt

∣∣
S=0

= B + σU,

dE(t)

dt

∣∣
E=0

= λSI,

dI(t)

dt

∣∣
I=0

= ΘE,

dR(t)

dt

∣∣
R=0

= ϵI,

dU(t)

dt

∣∣
U=0

= µR.

From above, we have got that all the rates are non
negative in a bounding planes of non negative cone
of R5

+. If, we draw the direction of the vector field
which is inward on the entire bounded planes. So
all the solutions of the system (1) are non negative
in R5

+.

4.2 Boundedness of the system
Theorem 2: The solutions of the model (1) are
uniformly bounded.
Proof: Let us consider an auxiliary variable rep-
resenting the sum of all classes

X = S + E + I +R+ U

dX

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
+
dU

dt

dX

dt
+ dX = B − φI − γR

dX

dt
+ dX ≤ B

We integrate both side with respect to t with the
help of the theory of differential inequality due to
Brikhoff and Rota [4]. Then we have the following
results

0 < X(S,E, I,R, U) ≤ B

d
as t→ ∞

So, all the solution of the system (1) initiated at
[R5

+\0] are confined in the following range

R = {(S,E, I,R, U) ∈ R5
+ : X =

B

d
+ ϵ}

for any ϵ > 0 and t→ ∞
Therefore, we may determine that all the solutions
of the above system (1) are positive and uniformly
bounded.
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Theorem 3: The solutions of the in-
terval model given in equation (2) are
uniformly bounded in the region R ={
(S,E, I,R, U) ∈ R5

+ : N = (B)(1−α)(B)α

(d)(1−α)(d)α
+ ϵ
}
,

for any ϵ > 0 and for t→ ∞.
Theorem 4: The solutions of the fuzzy
model given in equation (3) are uni-
formly bounded in the region R ={
(S,E, I,R, U) ∈ R5

+ : N =
Df (B̃)

Df (d̃)
+ ϵ
}
, for

any ϵ > 0 and for t→ ∞.

Now we apply the next generation matrix method
[47] on the system of (1) and compute the basic
reproduction number (R0). The spectral radius of
the matrix (F · V −1

1 ) or R0 is computed as

R0 =
λΘB

d(d+Θ)(d+ ϵ+ φ)

. For interval SEIRUS model and fuzzy SEIRUS
model, the basic reproduction number can be writ-
ten as respectively

R0h =
(λ)1−α(λ)α(Θ)1−α(Θ)α(B)1−α(B)α

(d)1−α(d)α{(d)1−α(d)α + (Θ)1−α(Θ)α}{(d)1−α(d)α + (ϵ)1−α(ϵ)α + (φ)1−α(φ)α}

and R0f =
Df (λ̃)Df (θ̃)Df (B̃)

Df (d̃)(Df (d̃) +Df (θ̃))(Df (d̃) +Df (ϵ̃) +Df (φ̃))

4.3 Equilibria
The SEIRUS model has two biologically equilib-
rium points. They are namely

(i) infection free steady state E0(S0, E0, I0, R0,
U0) =

(
B
d , 0, 0, 0, 0

)
and

(ii) endemic equilibrium point E∗(S∗, E∗, I∗,
R∗, U∗), where

S∗ = (d+θ)(d+ϵ+φ)
λΘ , E∗ = (d+ϵ+φ)I∗

θ ,

I∗ = [BλΘ−d(d+θ)(d+ϵ+φ)][(d+µ+γ)(d+σ)]
λ(d+θ)(d+ϵ+φ)(d+σ)(d+µ+γ)−λΘσµ ,

R∗ = ϵI∗

d+µ+γ , U∗ = µϵI∗

(d+µ+γ)(d+σ)

Theorem 5: If R0 < 1(R0 > 1) with the condi-
tion λΘ < d(d+ θ)(d+ ϵ+φ), the equilibrium E0

in disease free condition, is locally asymptotically
stable (unstable).
Proof: At the disease free equilibrium point E0 =
(S0, 0, 0, 0, 0), the characteristic equation of the
system (1) is given by

(x+ d)[x2 + (2d+Θ+ ϵ+ φ)x+ (d+Θ)(d+ ϵ+ φ)− λΘS0](x+ d+ µ+ γ)(x+ d+ σ) = 0

All roots becomes negative if the following condi-
tion holds

(i) 2d+ θ + ϵ+ φ > 0

(ii) d(d+ θ)(d+ ϵ+ φ)− λΘB > 0

i.e. R0 = λΘB
d(d+Θ)(d+ϵ+φ) < 1

or λΘB < d(d+ θ)(d+ ϵ+ φ)

Hence the system (1) will be locally asymptoti-
cally stable at disease free equilibrium point for
R0 < 1 with λΘ < d(d + θ)(d + ϵ + φ) and it is
unstable for R0 > 1.
Therefore the theorem is proved.
In similar way we have written the theorem.
Theorem 6: If R0h < 1 (R0h > 1) with the con-
dition (λ)(1−α)(λ)α(Θ)(1−α)(Θ)α(B)(1−α)(B)α

< (d)(1−α)(d)α((d)(1−α)(d)α + (Θ)(1−α)(Θ)α)
((d)(1−α)(d)α + (ϵ)(1−α)(ϵ)α + (φ)(1−α)(φ)α), the
disease free equilibrium E0 is locally asymptoti-
cally stable (unstable).
Theorem 7: If R0f < 1(R0f > 1) with the
condition Df (λ̃)Df (Θ̃)Df (B̃) < Df (d̃)(Df (d̃) +

Df (Θ̃))(Df (d̃) +Df (ϵ̃) +Df (φ̃)), the disease free
equilibrium E0 is locally asymptotically stable
(unstable).
Theorem 8: Let us assume that all of M1, N2,
N3, N4 are positive. Then the crisp model (1) is
locally asymptotically stable around its endemic
equilibrium point.
Proof: The characteristic equation of the system
(1) at point E∗

1 is constructed as

x5 +M1x
4 +M2x

3 +M3x
2 +M4x+M5 = 0

where, M1 = 5d+Θ+ ϵ+ φ+ λI∗ + µ+ γ + σ

M2 = 2d(λI∗ + µ+ γ + σ + 3d+ 2ϵ+ 2φ+ 2θ) + θ(λI∗ + µ+ γ + σ + ϵ+ φ)

+ ϵ(µ+ γ + σ̃) + φ(λI∗ + µ+ γ + σ) + λΘS∗
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M3 = λΘS∗(2λI∗ + µ+ γ + σ + 3d) + λI∗[d(Θ + ϵ+ φ+ 2σ + 2µ+ 2γ)

+ Θ(ϵ+ φ) + 2σ(µ+ γ)] + (µ+ γ + σ + 3d)(Θϵ+Θφ+ dϵ+ dφ+ dΘ)

+ d(d+ σd+ µd+ γd+ γσ)

M4 = [λΘS∗ + d(Θ + ϵ+ φ) + Θ(ϵ+ φ)][λI∗(µ+ γ + σ + 2d) + d(3d+ 2µ+ 2γ) + σ(µ+ γ)]

+ λI∗(σd+ µd+ γd+ µσ + γσ) + d(σd+ µd+ γd+ µσ + γσ + d2)(2d+Θ+ ϵ+ φ)

M5 = [λΘS∗ + d(Θ + ϵ+ φ) + Θ(ϵ+ φ)][λI∗ + (σd+ µd+ γd+ µσ + γσ)

+ d(d2 + σd+ µd+ γd+ µσ + γσ)]− λΘσϵµI∗

Let us assume N1 = M1, N2 = M1M2 − M3,
N3 = M1M2M3 −M2

3 −M2
1M4 +M1M5, N4 =

M1M2M3M4 − M2
3M4 − M2

1M4 − M1M
2
2M5 +

M2M3M5 + 2M1M4M5 −M2
5 .

Assuming that all M1, M3, M4, M5, N2, N3 and
N4 are positive. We apply the Routh-Hurwitz cri-
teria. Then the system (1) is locally asymptoti-
cally stable around E∗

1 .
Hence theorem is proved.
Theorem 9: If B ≤ Kmax then the crisp
model system (1) is globally asymptotically sta-
ble around its endemic equilibrium point E∗

1 .
Proof: Let us assume the Lyapunov function Z(t)
in the following way

Z = S + E + I +R+ U

Both side taking time derivative of Z, we get
dZ

dt
= B − d(S + E + I +R+ U)− φI − γR

Now let us assume that Kmax = d(Smax +Emax +
Imax+Rmax+Umax)+φImax+γRmax where, Imax
and Rmax are the largest value of I, R are respec-
tively. We provide all the largest values are finite.
If B ≤ Kmax then dZ

dt ≤ 0 although Z(t) ≥ 0.
Hence, we have concluded that the system (1)
is global stability around its endemic equilibrium
point.
Thus theorem is proved.
Similar manners hold for interval type model and
fuzzy model.

5. Optimality of System
In this portion, we describe the optimal control
problem to observe how proper control policy di-
minishes the disease from the population. In
COVID-19 disease people mainly infected when
they come into the infected people both asymp-
tomatic and symptomatic people. So the precau-
tionary measure maintaining social distance, using
face mask in mass gathering area are the impor-
tant factor to diminish the disease fatality. We
take the incurred cost that needs to minimize by

applying control interventions. With the help of
Pontryagin’s Maximum principle [54], we form the
objective functional

L1 = min
v1,v2

∫ T1

0

(k1I + k2v
2
1 + k3v

2
2)dt

Subject to the system
dS(t)

dt
= B − (1− v1)λSI − dS + σU − v2S

dE(t)

dt
= (1− v1)λSI − dE −ΘE

dI(t)

dt
= ΘE − (d+ ϵ+ φ)I

dR(t)

dt
= ϵI − (d+ µ+ γ)R

dU(t)

dt
= v2S + µR− (d+ σ)U (5)

where, S(0), E(0), I(0), R(0), U(0) are all posi-
tive. We assume that k1 is the per capita loss due
to presence of infected population at any time.
The square of control parameter is chosen to re-
move the severity of side effect [52, 53]. v1 is
considered precautionary measure (like maintain
social distance, using face mask in mass gather-
ing) and v2 is considered due to protective mea-
sure (like maintaining suitable hygiene, staying in
isolation) susceptible population directly moves to
recovered population. k2 and k3 are the weighted
function of v1 and v2 respectively. Assuming k1,
k2, k3 are positive constant in time interval [0, T1].
The main theme of our work is to determine op-
timal response intensity and optimal treatment
with minimum cost. So the area of the control
intervention v1(t), v2(t) is given as follows:
Ψ = {(v1(t), v2(t)) : (v1(t), v2(t))

∈ [0, 1]× [0, 1], t ∈ [0, T1]}

where v1(t), v2(t) are measurable and bounded
function for t ∈ [0, T1]. When people take a
full violation of precautionary measure (like so-
cial distance) then v1(t) takes lowest value which
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is 0. When people takes full maintaining the pre-
cautionary measure then v1(t) takes highest value
which is 1. In other situation the control vari-
able is in v1(t) ∈ (0, 1). v2(t) represents as control
policy which is due to protective measure suscep-
tible population directly moves to recovered pop-
ulation. From beginning it satisfies 0 ≤ v2(t) ≤ 1.
Theorem 10: In the region ψ = {(v1(t), v2(t)) :
(v1(t), v2(t)) ∈ [0, 1] × [0, 1], t ∈ [0, T1]} the
optimal control intervention (v∗1 , v

∗
2) which min-

imizes L1 is given by v∗1 = max{0,min(v1, 1)} and
v∗2 = max{0,min(v2, 1)} where v1 = (τ2−τ1)λSI

2k2
,

v2 = (τ1−τ5)S
2k3

.

Proof: The Lagrangian of the problem is given
by

L2 = k1I + k2v
2
1 + k3v

2
2 .

Let us define the Hamiltonian function as

H(S,E, I,R, U, v1, v2, τ)

= L2(I, v1, v2) + τ1
dS

dt
+ τ2

dE

dt
+ τ3

dI

dt

+ τ4
dR

dt
+ τ5

dU

dt
.

Here τ = (τ1, τ2, τ3, τ4, τ5) are adjoint variable.
Using Pontryagin’s maximum principle we get
minimized Hamiltonian to minimize the cost func-
tional. The Hamiltonian can be determined by
solving the following differential equations

dτ1
dt

= −∂H
∂S

= τ1{(1− v1)λI + d+ v2}

− τ2{(1− v1)λI} − τ5v2

dτ2
dt

= −∂H
∂E

= (d+Θ)τ2 − τ3Θ

dτ3
dt

= −∂H
∂I

= −k1 + τ1(1− v1)λS

− τ2(1− v1)λS + τ3(d+ ϵ+ φ)− τ4ϵ

dτ4
dt

= −∂H
∂R

= τ4(d+ µ+ γ)− τ5µ

dτ5
dt

= −∂H
∂U

= −τ1σ + τ5(d+ σ) (6)

Satisfying the transversality condition τi(T1) = 0,
i = 1, 2, 3, 4, 5. From optimality conditions: ∂H

∂v1
=

0 and ∂H
∂v2

= 0 at the point v1 = v1 and v2 = v2
respectively. We have

v1 = v1 =
(τ2−τ1)λSI

2k2
and v2 = v2 =

(τ1−τ5)S
2k3

.

The lower bound and upper bound of two controls
are 0 and 1 respectively. Therefore, we have v∗1 =
0 if v1 < 0 and v∗1 = 1 if v1 > 1, otherwise v∗1 = v1.
Similar results hold for other control parameter v2.
Hence, the theorem is proved.

6. Numerical Results
The systems of equations are solved by MATLAB
packages. We use the parameters in the embod-
iment of the model are given below in the Table
1. We choose the parameter value in consensus
with the suitable value for obtaining the stability
of the disease free equilibrium state of the model
and also we have managed supposition data for
this work.

Table 1: Input Data of the Crisp Model
Parameters Values Data Source Values Data Source

(Disease free (Endemic
equilibrium) equilibrium)

B 0.00567 per day Assumed 0.00567 per day Assumed
λ 10−6/person/day Assumed 10−6/person/day Assumed
d 10−3/person/day Victor [48] 10−3/person/day Victor [48]
σ 0.28404/day Nesteruk [36] 0.28404/day Nesteruk [36]
Θ 0.27 per day Assumed 0.1 per day Assumed
ϵ 0.095 per day Assumed 0.095 per day Assumed
φ 0.005 per day Assumed 0.005 per day Assumed
µ 0.1 per day JHH [20] 0.1 per day JHH [20]
γ 6× 10−7 per day Assumed 6× 10−7 per day Assumed
T 14 day WHO (2020) [18] 14 day WHO (2020) [18]

is 0. When people takes full maintaining the pre-
cautionary measure then v1(t) takes highest value
which is 1. In other situation the control vari-
able is in v1(t) ∈ (0, 1). v2(t) represents as control
policy which is due to protective measure suscep-
tible population directly moves to recovered pop-
ulation. From beginning it satisfies 0 ≤ v2(t) ≤ 1.
Theorem 10: In the region ψ = {(v1(t), v2(t)) :
(v1(t), v2(t)) ∈ [0, 1] × [0, 1], t ∈ [0, T1]} the
optimal control intervention (v∗1 , v

∗
2) which min-

imizes L1 is given by v∗1 = max{0,min(v1, 1)} and
v∗2 = max{0,min(v2, 1)} where v1 = (τ2−τ1)λSI

2k2
,

v2 = (τ1−τ5)S
2k3

.
Proof: The Lagrangian of the problem is given
by

L2 = k1I + k2v
2
1 + k3v

2
2 .

Let us define the Hamiltonian function as
H(S,E, I,R, U, v1, v2, τ)

= L2(I, v1, v2) + τ1
dS

dt
+ τ2

dE

dt
+ τ3

dI

dt

+ τ4
dR

dt
+ τ5

dU

dt
.

Here τ = (τ1, τ2, τ3, τ4, τ5) are adjoint variable.
Using Pontryagin’s maximum principle we get
minimized Hamiltonian to minimize the cost func-
tional. The Hamiltonian can be determined by
solving the following differential equations

dτ1
dt

= −∂H
∂S

= τ1{(1− v1)λI + d+ v2}

− τ2{(1− v1)λI} − τ5v2
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Result 1. Crisp Model
We take the crisp values of the parameter from the
Table 1. Fig. 2 presents the solution curves for
disease free equilibrium. We see that susceptible
population is increase as time increases. From the
figure, we conclude that the system has only the
disease free equilibrium and it is locally asymptot-
ically stable (see Fig. 3), i.e., exposed, infected,
quarantined or isolated and recovered population
are extinct from the system. This is happened
because rate of spreading infection to the contact
with exposed populations (λ) and force of infec-
tion rate (Θ) is small. For the higher values of
θ, there exists endemic equilibrium for the system
(1). Now, if we take the value Θ = 0.1 and other

parameter values are unchanged i.e. we take the
values (Endemic equilibrium) from Table 1, we
can get the solution curves for endemic equilib-
rium. From Fig. 3 we see that exposed, infected,
quarantined or isolated and recovered populations
are in decreasing order after 100 days (approx).
We have drawn the phase space trajectories for
different classes of population in Fig. 4 with the
help of same set of parametric values (Table 1).
In this figure exposed population, infected pop-
ulation, quarantined or isolated population and
recovered population are plotted with respect to
susceptible population. Also we have plotted re-
covered population with respect to infected popu-
lation and quarantined or isolated population.

Fig. 2. Solution curves of disease free equilibrium point

Fig. 3. Solution curves of endemic equilibrium point

J. Sci. Enq., 2021, 1(1) 109



Mathematical study of COVID-19 outbreak…

Fig. 4. Solution curves of the disease free equilibrium point in different values of α

Result 2: Interval SEIRUS Model
In this portion, we set the values of the parameters
as interval numbers given in Table 2. Fig. 4 and
Fig. 5 represent the solution curve of the system
(2) for disease free equilibrium and endemic equi-
librium for the different values of α. In Fig. 4 we
see that the susceptible populations are increasing

as time increase for the different values of α. In
Fig. 5 we observe that exposed, infected, quar-
antined or isolated, recovered population decrease
after 40–60 days and the susceptible population
increase slightly as time increase for the different
values of α.
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Table 2: Input Data of the Interval Model
Interval Valued Interval Values Interval Values

Parameters (Disease Free Equilibrium) (Endemic Equilibrium)
[B,B] [4.536× 10−3, 7.938× 10−3] [4.536× 10−3, 7.938× 10−3]

[λ, λ] [8× 10−7, 1.4× 10−6] [8× 10−7, 1.4× 10−6]

[d, d] [8× 10−4, 1.4× 10−3] [8× 10−4, 1.4× 10−3]

[σ, σ] [0.08521,0.3976] [0.08521,0.3976]
[ϵ, ϵ] [0.076,0.133] [0.114,0.133]
[µ, µ] [0.08,0.14] [0.08,0.14]
[Θ,Θ] [0.216,0.378] [0.08,0.14]
[φ,φ] [4× 10−3, 7× 10−3] [4× 10−3, 7× 10−3]

[γ, γ] [4× 10−7, 8.4× 10−7] [4× 10−7, 8.4× 10−7]

Fig. 5. Solution curves at the endemic equilibrium point for different values α
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Result 3: Fuzzy SEIRUS Model
We take all the parameters as triangular fuzzy
number. We defuzzified the values of the pa-
rameter by using Graded mean integration value
technique. The variation graphs for different
values of q are represented. Fig. 6 presents
the variation of susceptible, exposed, infected,
quarantined or isolated and recovered populations

for the different values of q in fuzzy environment.
Here, dark blue, pink, green, yellow, red lines
indicate the populations at q = 0, q = 0.2,
q = 0.5, q = 0.7, q = 1 respectively. It is
observed that a slight deflection can be arisen
on the population curves. All the curves will
meet at one stage. This implies that the solution
point will be same for some values of time t.

Fig. 6. Variation of populations at endemic equilibrium for different values of q
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Table 3: Input Data of the Fuzzy Model
Parameters TFN

B̃ (4.53× 10−3, 0.00567, 7.93× 10−3)

λ̃ (8× 10−7, 10−6, 1.4× 10−6)

d̃ (8× 10−4, 10−3, 1.4× 10−3)

σ̃ (0.0852, 0.28404, 0.3976)

ϵ̃ (0.076, 0.095, 0.133)

µ̃ (0.08, 0.1, 0.14)

Θ̃ (0.08, 0.1, 0.14)

φ̃ (4× 10−3, 0.005, 7× 10−3)

γ̃ (4.8× 10−7, 6× 10−7, 8.4× 10−7)

7. Sensitivities of Parameters of the
Crisp Model

In this section, we have described the sensitivities
of parameters of the crisp model (1). We have
investigated the sensitivity analysis of the system
(1) with respect to the parameter disease trans-
mission rate from exposed population to suscepti-
ble population (λ), proportion of observed popu-
lation and being moved to susceptible population
(σ), force of infection rate of the population (Θ),
rate of recovery of quarantined or isolated popu-
lation (µ).
Sensitivity of λ: We see that the numbers of
exposed, infected, quarantined or isolated and

Fig. 7. Sensitivity of the system (1) for different values λ
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recovered populations are directly proportional
with disease transmission rate. i.e. if disease trans-
mission rate is increased then exposed, infected,
quarantined and recovered populations are also
increased. But for the susceptible population we
have observed reverse scenario. All the popula-
tions are influenced by varying the parameter λ.
Fig. 7 illustrates the sensitivity of different value
of λ.

Sensitivity of the parameter Θ: In the sensi-
tivity of the parameter Θ, we see that susceptible
population is directly proportional to the param-
eter force of infection rate. But reverse scenario
can be shown for the exposed population. The in-
fected population and quarantine or isolated pop-
ulation are increased firstly as the value of Θ is
increased. Fig. 8 represents the sensitivity of Θ.

Fig. 8. Sensitivity of the system (1) for different values of θ
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Fig. 9. Sensitivity of the system (1) for different values of σ

Sensitivity of the parameter σ: In the sensi-
tivity of σ we see that susceptible population is
directly proportional to σ, observed population
moved to susceptible but reverse scenario can be
presented for the recovered population. Infected,

quarantined or isolated population are gradually
increased with the increase of the value σ. Fig. 9
indicates the sensitivity of σ.
Sensitivity of the parameter µ: In the
sensitivity of µ we have observed that susceptible,
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exposed, infected, recovered population are di-
rectly proportional to µ recovery rate of quaran-
tined or isolated population. But quarantine or

isolated population are inversely proportion to µ.
We have drawn Fig. 10 for sensitivities of the
different values of µ.

Fig. 10. Sensitivity of the different value of µ
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8. Numerical Results with Control
Policies

We have found the optimal control variables with
the help of forward-backward sweep method. We
have solved the optimal state system and adjoint
state system using forward and backward in time
respectively. Assuming the control policies are im-
plemented for T1 = 100 days. We have used the
set of parameters like B = 0.00567, λ = 10−6,
d = 103, σ = 0.28404, Θ = 0.1, ϵ = 0.095,
φ = .005, µ = 0.1, γ = 6×10−7, k1 = 1, k2 = 100,
k3 = 100 and considered the initial values of the
state variables as S(0) = 500000, E(0) = 1000,

I(0) = 475, R(0) = 100, U(0) = 90. We have rep-
resented the figures for the optimal control prob-
lem using MATLAB. Fig. 11 represents the popu-
lation trajectories for both control policies. From
the Fig. 11 it is observed that the susceptible
population increase with time. When the people
maintain social distance and take precautionary
measure for the infectious disease then the infected
population and quarantined or isolated population
decreases gradually. Also the count of recovered
individuals increases significantly. The variations
of adjoint or costate variables are represented in
Fig. 12.

Fig. 11. Profiles of populations with applied optimal control v∗1 and v∗2

Fig. 12. Variation of adjoint variables as time evolves
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Fig. 13 represents the path of optimal control
policies v∗1 , v∗2 . People maintain social distance
and take precautionary measure, and then the

virus cannot be transmitted in the population
which indicates that control strategy works with
higher intensity over the time period.

Fig. 13. Profile of control parameters as time evolves

9. Conclusions

In this work, we developed the COVID-19
SEIRUS model which is quite different from other
traditional epidemic models. In the theoretical
portion, the boundedness of the system is stud-
ied. Also, the disease free equilibrium and en-
demic equilibrium are investigated. Further, the
condition of stability of the system and the condi-
tion for locally asymptotically stability are investi-
gated and basic reproduction number is also com-
puted. Also, the COVID-19 SEIRUS model is con-
verted to the fuzzy SEIRUS model and the inter-
val SEIRUS model. Solution curves are drawn for
both disease free equilibrium and endemic equi-
librium in Fig. 2 and Fig. 3 respectively. With
respect to different population the phase space
trajectories of the crisp SEIRUS model are illus-
trated in Fig. 4. For fuzzy SEIRUS model, we
have drawn variation of populations at endemic
equilibrium for different values of q in Fig. 6. We
have explained the sensitivity of the controlled pa-
rameter λ, Θ, σ and µ. When the force of infec-
tion rate (Θ) is low then the basic reproduction
number must be less than 1 and when infection
rate increases then basic reproduction number is
greater than 1. From the sensitivity of the pa-
rameter, we see that when the people are in quar-
antine or isolation the rate of infection decreased.
It is concluded that all the population is signifi-
cantly influenced by the impreciseness of param-
eters. Therefore, the fuzzy model is more robust

than crisp ones. The findings in this study also
indicate that we should be prepared to fight the
corona virus disease for a much longer term than
that of the current epidemic wave, in order to re-
duce the endemic burden and exterminate the dis-
ease eventually. In Indian perspective, one can use
the factor of migrant laborers. One may develop
the model with the use of stochastic, fuzzy and
intuitionistic fuzzy uncertainties.
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