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Abstract 
This paper extends an EOQ model to consider the 
optimum production quantity the EPQ model that 
is not only dependent on the inventory policy but 
also on firms’ credit policy. Here, the conditions of 
using a discounted cash-flows (DCF) approach and 
trade credit depending on the quantity produced 
are discussed. We consider that if the production 
quantity is less than at which the delay in payments 
is permitted, the payment for the item must be 
made immediately. Otherwise, the fixed trade credit 
period is permitted. This paper incorporates all 
concepts of a discounted cash-flows (DCF) 
approach, trade credit and the quantity production 
inventory to generalize the EOQ model. 
 
Keywords: Inventory; Trade credit; EPQ model; 
Discounted Cash-flows 
 
1. Introduction 
The Economic Production quantity (EPQ) model is 
a simple mathematical model to deal with inventory 
management issues in a production-inventory 
system. It is considered to be one of the most 
popular inventory control models used in the 
industry. Huang et al. [1] established an EPQ model 
under cash discount and delay in payment with 
different selling and purchasing costs to 
incorporate Teng [2], Chung and Huang [3], and 
Huang and Chung [4]. Huang [5] developed an EPQ 
model under trade credit contract and generalized 
Chung and Huangs [6] proposed model by 
considering higher selling price than purchasing 
cost. Hu and Liu [7] extended Chung and Huang [8] 
to the EPQ framework with shortages and unequal 
selling and purchasing prices. 
In addition, Hou and Lin presented an EOQ 
inventory model for deteriorating items under trade 
credit. They obtained the optimal ordering and 
pricing policies and discussed the effects of 
inflation, deterioration, and permissible delay in 
payment [9]. Also, Chung [10] formulated an EPQ 
model under two-level trade credit, from the Huang 
[11] viewpoint, limited storage capacity and 
different selling and purchasing prices. 
Molamohamadi et al. [13] formulated an EPQ 
model of an exponentially deteriorating item with 
price-sensitive demand under trade credit, where 
shortages are considered. Moreover, they applied 
cuckoo search algorithm for solving the model and 

demonstrated the effectiveness of trade credit over 
the classical inventory system. 
This paper is basically an extension of the work of 
Chung and Liao [14]. They developed an EOQ 
model under order-quantity-dependent trade credit 
and DCF approach to generalize Chung [15]. It is 
concerned the credit policy may seem as an 
alternative to price discounts because such policies 
are not thought to provoke competitors to reduce 
their prices and thus introduce lasting price 
reductions, or because such policies are traditional 
in the firms industry. We present the economic 
producing policies in the presence of trade credit 
using a discounted cash-flows (DCF) approach. We 
divide the study into three cases: 
(a) Instantaneous cash-flows (the case of the EPQ 
model). 
(b) Credit only on units in stock when 𝑇𝑃 ≤ 𝑀 
(where 𝑇𝑃 denotes the production time and 𝑀 
denotes the credit period). 
(c) Credit only on units in stock when 𝑇𝑃 ≥ 𝑀. 
On the other hand, the credit policy may seem as an 
alternative to price discounts because such policies 
are not thought to provoke competitors to reduce 
their prices and thus introduce lasting price 
reductions, or because such policies are traditional 
in the firms industry. Furthermore, Khouja and 
Mehrez (1996) investigate the effect of supplier 
credit policies on the optimal order quantity within 
the economic order quantity framework. The 
supplier credit policies addressed in Khouja and 
Mehrez [12] fall into two categories. One is that, 
supplier credit policies where terms are 
independent of the order quantity and the other is 
that, supplier credit policies where credit terms are 
linked to the order quantity. In the latter case, 
suppliers use favorable credit terms to encourage 
customers to order large quantities. In other words, 
the favorable credit terms apply only at large order 
quantities and are used in place of quantity 
discounts. In this regard, this paper is only 
concerned with the latter case. 
The paper is organized as follows. Section 2 
describes the mathematical model and section 3 
presents the solution procedure of the optimal 
inventory cycle time and a useful algorithm. In 
section 4, a numerical example to illustrate the 
model and sensitivity analysis of the optimal 
solution with respect to parameters of the system is 
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carried out. The paper ends with concluding 
remarks in section 5. 
2. Mathematical model and analysis 
In this section, the mathematical model of the 
inventory system in case of the EPQ model is 
presented. The fact, the present value of all future 
cash-flows in different cases is computed. 
2.1.  Notations 
The following notations will be used throughout the 
paper: 
𝑇       the inventory cycle time, which is a decision 
variable 
𝑇𝑃      the production cycle time 
𝑐       the purchase cost per unit 
𝐷      the demand rate per unit time 
𝑃      the production rate per unit time 
ℎ     the out-of-pocket inventory-carrying costs as a 
proportion of the value of inventory per unit time 
𝑟      the opportunity cost (i.e., the doscount rate) per 
unit time 
𝐴      the average ordering cost per order (or set-up 
cost per production run) in dollars 
𝑀     the credit period 
𝑊    quantity at which the delay in payments is 
permitted 
2.2.  Assumptions 
Next, the following assumptions are made to 
establish the mathematical inventory model. 

1. The demand rate is known and constant 
with time. 

2. The replenishment rate is known and 
uniform. 

3. The ordering lead time is zero. 
4. Shortages are not allowed. 
5. Time horizon is infinite. 
6. If 𝑄 < 𝑊, the delay in payment is not 

permitted. Otherwise, certain fixed trade 
credit period 𝑀 is permitted. That is, 𝑄 <
𝑊 holds if and only if 𝑇 < 𝑊/𝐷. 

7. During the credit period, the firm makes 
payment to the supplier immediately after 
use of the materials. On the last day of the 
credit period, the firm pays remain balance. 

3. Model Formulation 
Now, the discounted cash flows approach will be 
employed for the analysis of the optimal inventory 
policy in the presence of the trade credit in different 
cases. 
The above assumption (6) lead to the two cases to 

discuss: (i) 𝑀 >
𝑊

𝑃
 and 𝑀 ≤

𝑊

𝑃
. 

Additionally, this paper is presented the economic 
producing policies in the presence of trade credit 
using a discounted cash-flows (DCF) approach. We 
divide the study into three cases: 
(a) Instantaneous cash-flows (the case of the EPQ 
model). 
(b) Credit only on units in stock when 𝑇𝑃 ≤ 𝑀. 
(c) Credit only on units in stock when 𝑇𝑃 ≥ 𝑀. 
The present values of cash-flows in above three 
cases are discussed as follows: 

Case 1: Instantaneous cash-flows (the case 
of the EPQ model) 
Case 1 presents the DCF approach for the EPQ 
model under the assumption of instantaneous 
inventory holding costs. Therefore, the present 
value of the set-up cost can be shown as: 
𝐴 + 𝐴𝑒−𝑟𝑇 + 𝐴𝑒−2𝑟𝑇 +⋯……… . . . = ∑  ∞

𝑛=0 𝐴𝑒
−𝑛𝑟𝑇 =

𝐴

1−𝑒−𝑟𝑇
.                                   (1) 

The present value of the out-of-pocket inventory-
carrying cost can be illustrated as: 

 ℎ𝑐 [∑  ∞
𝑛=0  ∫  

𝑇𝑃
0

  (𝑃 − 𝐷)𝑡𝑒−𝑟(𝑡+𝑛𝑇)𝑑𝑡 + ∫  
𝑇

𝑇𝑃
 𝐷(𝑇 −

𝑡)𝑒−𝑟(𝑡+𝑛𝑇)𝑑𝑡] 

 =
ℎ𝑐(𝑃−𝐷)

𝑟2(1−𝑒−𝑟𝑇)
−

ℎ𝑐(𝑃𝑒−𝑟𝐷𝑇/𝑃−𝐷𝑒−𝑟𝑇)

𝑟2(1−𝑒−𝑟𝑇)
=

ℎ𝑐𝑃(1−𝑒−𝑟𝐷𝑇/𝑃)

𝑟2(1−𝑒−𝑟𝑇)
−

ℎ𝑐𝐷

𝑟2
.                                        (2) 

Where 𝑇𝑃 =
𝐷𝑇

𝑃
, and the present value of the 

purchase cost can be presented as: 
 𝑐𝐷𝑇 + 𝑐𝐷𝑇𝑒−𝑟𝑇 + 𝑐𝐷𝑇𝑒−2𝑟𝑇 +⋯……… =

∑  ∞
𝑛=0 𝑐𝐷𝑇𝑒

−𝑛𝑟𝑇 =
𝑐𝐷𝑇

1−𝑒−𝑟𝑇
.                              (3) 

Furthermore, the present value of all future cash-
flows in this case is: 

𝑃𝑉1(𝑇) =
ℎ𝑐𝑃(1−𝑒−𝑟𝐷𝑇/𝑃)

𝑟2(1−𝑒−𝑟𝑇)
−

ℎ𝑐𝐷

𝑟2
+

𝐴+𝑐𝐷𝑇

1−𝑒−𝑟𝑇
       (4) 

Case 2: Credit only on units in stock when 
𝑇𝑃 ≤ 𝑀 
Case 2 assumes the existence of the credit period M. 
During the credit period, the firm makes payment 
to the supplier immediately after the use of the 
materials. On the last day of the credit period, firm 
pays the remaining balance. Additionally, the credit 
period is greater than the replenishment cycle 
length in this case. The present value of the 
purchase cost can be computed as: 

𝑐 ∑  ∞
𝑛=0 ∫  

𝑇𝑃
0

𝑃𝑒−𝑟(𝑡+𝑛𝑇)𝑑𝑡 =
𝑐𝑃(1−𝑒−𝑟𝐷𝑇/𝑃)

𝑟(1−𝑒−𝑟𝑇)
.     (5) 

Then the present value of all future cash-flows in 
this case is: 

 𝑃𝑉2(𝑇) =
ℎ𝑐𝑃(1−𝑒−𝑟𝐷𝑇/𝑃)

𝑟2(1−𝑒−𝑟𝑇)
−

ℎ𝑐𝐷

𝑟2
+

𝑟𝐴+𝑐𝑃(1−𝑒−𝑟𝐷𝑇/𝑃)

𝑟(1−𝑒−𝑟𝑇)
.                                             

(6) 
Case 3: Credit only on units in stock when 
𝑇𝑃 ≥ 𝑀 
Case 3 deals with a similar situation to case 2. 
During the credit period, the firm makes payment 
to the supplier immediately after the use of the 
materials. On the last day of the credit period, the 
firm pays the remaining balance. Additionally, the 
credit period is shorter than the replenishment 
length in this case. The present value of the 
purchase cost can be shown as: 

 𝑐𝑃 ∑  ∞
𝑛=0 [∫  

𝑀

0
  𝑒−𝑟(𝑡+𝑛𝑇)𝑑𝑡 + (𝑇𝑃 −𝑀)𝑒

−𝑟(𝑀+𝑛𝑇)] =

𝑐𝑃(1−𝑒−𝑟𝑀)+𝑟𝑐(𝐷𝑇−𝑃𝑀)𝑒−𝑟𝑀

𝑟(1−𝑒−𝑟𝑇)
. (7) 

Furthermore, the present value of all future cash-
flows in this case is: 

 𝑃𝑉3(𝑇) =
ℎ𝑐𝑃(1−𝑒−𝑟𝐷𝑇/𝑃)

𝑟2(1−𝑒−𝑟𝑇)
−

ℎ𝑐𝐷

𝑟2
+

𝑟𝐴+𝑐𝑃(1−𝑒−𝑟𝑀)+𝑟𝑐(𝐷𝑇−𝑃𝑀)𝑒−𝑟𝑀

𝑟(1−𝑒−𝑟𝑇)
.                    (8) 
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Now, we will study the two cases, respectively. 
(i) Suppose that 𝑀 > 𝑊/𝑃 
For this case, combining the cases discussed above, 
we have 

 𝑃𝑉∞(𝑇)) =

{
 
 

 
 𝑃𝑉1(𝑇);  if 0 < 𝑇 <

𝑊

𝐷
             (𝑖)

𝑃𝑉2(𝑇);  if 
𝑊

𝐷
≤ 𝑇 <

𝑀𝑃

𝐷
          (𝑖𝑖)

𝑃𝑉3(𝑇);  if 
𝑀𝑃

𝐷
≤ 𝑇                    (𝑖𝑖𝑖)

    

(9) 
where 𝑃𝑉∞(𝑇) is the present value of all future cash-
flow cost. From the following lemma, we should 
find that 𝑃𝑉1(𝑇) > 𝑃𝑉2(𝑇) if 𝑇 > 0. 

Lemma 1: 𝑟𝑇𝑒𝑟𝐷𝑇/𝑃 − 𝑒𝑟𝐷𝑇/𝑃 + 1 > 0 if 𝑟𝑇 > 0. 
Proof. Let ℎ(𝑥) = 𝑥𝑒𝑎𝑥 − 𝑒𝑎𝑥 + 1 > 0 for 𝑥 > 0,0 <
𝑎 < 1. Then we have ℎ′(𝑥) = 𝑎𝑥𝑒𝑎𝑥 + (1 − 𝑎)𝑒𝑎𝑥 > 
0 for 𝑥 > 0. So ℎ(𝑥) is increasing on 𝑥 ≥ 0. We get 
ℎ(𝑥) > ℎ(0) = 0 for 𝑥 > 0. Let 𝑥 = 𝑟𝑇 and 𝑎 = 𝐷/𝑃. 
We get 𝑟𝑇𝑒𝑟𝐷𝑇 − 𝑒𝑟𝐷𝑇 + 1 > 0 if 𝑟𝑇 > 0. We have 
completed the proof. 
From Eqs. (4) and (6), we have 

 𝑃𝑉1(𝑇) − 𝑃𝑉2(2) =
𝑐𝐷𝑒−𝑟𝐷𝑇/𝑃

𝑟(1−𝑒−𝑟𝑇)
(𝑟𝑇𝑒𝑟𝐷𝑇/𝑃 − 𝑒𝑟𝐷𝑇/𝑃 +

1)                                                                      (10) 

(ii) Suppose that 𝑀 ≤ 𝑊/𝑃 
When 𝑀 ≤ 𝑊/𝑃, 𝑃𝑉∞(𝑇) can be expressed as 
follows: 

 𝑃𝑉∞(𝑇) = {
𝑃𝑉1(𝑇);  if 0 < 𝑇 <

𝑊

𝐷
     (𝑖)

𝑃𝑉3(𝑇);  if 
𝑊

𝐷
≤ 𝑇              (𝑖𝑖)

                                                                                     

(11) 
From the following lemma, we get that 𝑃𝑉1(𝑇) >
𝑃𝑉3(𝑇) if 𝑇𝑃 ≥ 𝑀. 
Lemma 2: 𝑟𝐷𝑇(1 − 𝑒−𝑟𝑀) − 𝑃𝑒−𝑟𝑀(𝑒𝑟𝑀 − 𝑟𝑀 −
1) > 0 if 𝑇𝑃 ≥ 𝑀. 
Proof: Let 𝑘1(𝑇) = 𝑟𝐷𝑇(1 − 𝑒

−𝑟𝑀) − 𝑃𝑒−𝑟𝑀(𝑒𝑟𝑀 −
𝑟𝑀 − 1) for 𝑇 > 0, then we have 𝑘′(𝑇) = 𝑟𝐷(1 −
𝑒−𝑟𝑀) > 0. Hence 𝑘1(𝑇) is increasing on 𝑇 > 0. 
Hence, 𝑘1(𝑀𝑃/𝐷) = 0, we get that 𝑘1(𝑇) ≥ 𝑘1(𝑀𝑃/
𝐷) = 0 for 𝑇𝑃 ≥ 𝑀 (i.e., 𝑇 ≥ 𝑀𝑃/𝐷). Consequently, 
𝑟𝐷𝑇(1 − 𝑒−𝑟𝑀) − 𝑃𝑒−𝑟𝑀(𝑒𝑟𝑀 − 𝑟𝑀 − 1) > 0 if 𝑇𝑃 ≥
𝑀(𝑇 ≥ 𝑀𝑃/𝐷). This completes the proof. 
From Eqs. (4) and (8), we have 

 𝑃𝑉1(𝑇) − 𝑃𝑉2(𝑇) =
𝑟𝐷𝑇(1−𝑒−𝑟𝑀)−𝑃𝑒−𝑟𝑀(𝑒𝑟𝑀−𝑟𝑀−1)

𝑟(1−𝑒−𝑟𝑇)
                                                                              

(12) 
and Lemma 2 implies that 𝑃𝑉1(𝑇) > 𝑃𝑉3(𝑇) if 𝑇𝑃 ≥
𝑀. Since 𝑃𝑉2(𝑀𝑃/𝐷) = 𝑃𝑉3(𝑀𝑃/𝐷) and 𝑃𝑉1(𝑊/
𝐷) > 𝑃𝑉2(𝑊/𝐷), 𝑃𝑉∞(𝑇) is continuous except 𝑇 =
𝑊/𝐷. 
4. The optimization procedure 
Our objective is to minimize the present value of all 
future cash-flow cost 𝑃𝑉∞(𝑇). That is, 

{
 Minimize 𝑃𝑉∞(𝑇)

 Subject to 𝑇 > 0
 

For this, the first derivative of 𝑃𝑉1(𝑇) with respect 
to 𝑇 is given as: 
𝑑𝑃𝑉1(𝑇)

𝑑𝑇
=

ℎ𝑐𝐷𝑒−𝑟𝐷𝑇/𝑃

𝑟(1−𝑒−𝑟𝑇)
−

ℎ𝑐𝑃𝑒−𝑟𝑇(1−𝑒−𝑟𝐷𝑇/𝑃)

𝑟(1−𝑒−𝑟𝑇)
2 +

𝑐𝐷

1−𝑒−𝑟𝑇
−

(𝐴+𝑐𝐷𝑇)𝑟𝑒−𝑟𝑇

(1−𝑒−𝑟𝑇)
2                                     (13) 

We can obtain, by setting 
𝑑𝑃𝑉1(𝑇)

𝑑𝑇
= 0 and 

simplifying the resulting equation, the optimal cycle 
time 𝑇1

∗ as the unique non-negative solution of the 
following equation: 

 ℎ𝑐𝐷𝑒−
𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) − ℎ𝑐𝑃𝑒−𝑟𝑇(1 − 𝑒−𝑟𝐷𝑇/𝑃) +

𝑐𝐷𝑟(1 − 𝑒−𝑟𝑇) − (𝐴 + 𝑐𝐷𝑇)𝑟2𝑒−𝑟𝑇 = 0.                                        
(14) 
We define 

 𝑓1(𝑇) = ℎ𝑐𝐷𝑒
−
𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) − ℎ𝑐𝑃𝑒−𝑟𝑇(1 −

𝑒−𝑟𝐷𝑇/𝑃) + 𝑐𝐷𝑟(1 − 𝑒−𝑟𝑇) − (𝐴 + 𝑐𝐷𝑇)𝑟2𝑒−𝑟𝑇 .      
(15) 
Both 𝑓1(𝑇) and 𝑃𝑉1(𝑇) have the same sign and 
domain. It is easy to obtain the following derivative 
𝑑𝑓1(𝑇)

𝑑𝑇
=

𝑟

𝑃
[−ℎ𝑐𝐷2𝑒−

𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) + ℎ𝑐𝑃𝑒−𝑟𝑇(1 −

𝑒−𝑟𝐷𝑇/𝑃) + (𝐴 + 𝑐𝐷𝑇)𝑃2𝑒−𝑟𝑇]   

          ≥
𝑟

𝑃
[−ℎ𝑐𝑃2𝑒−

𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) + ℎ𝑐𝑃2𝑒−𝑟𝑇 (1 −

𝑒−
𝑟𝐷𝑇

𝑃 ) + (𝐴 + 𝑐𝐷𝑇)Pr2 𝑒−𝑟𝑇] 

         ≥
𝑟

𝑃
[ℎ𝑐𝑃2 (𝑒−𝑟𝑇 − 𝑒−

𝑟𝐷𝑇

𝑃 ) + (𝐴 +

𝑐𝐷𝑇) Pr2 𝑒−𝑟𝑇] > 0.                                     (16)  

Furthermore, we have 𝑓1(0) = −(𝐴 + 𝑐𝐷𝑇)𝑟
2 < 0. 

Based upon the arguments, we sure that the 
solution to (4) not only exists but also is unique, 
which also implies that, 

 
𝑑𝑃𝑉1(𝑇)

𝑑𝑇
= {

< 0  if 𝑇 < 𝑇1
∗

= 0  if 𝑇 = 𝑇1
∗

> 0  if 𝑇 > 𝑇1
∗

                   (17)                                                                                                                                           

In similar argument as above, the optimal cycle 
time 𝑇2

∗ and 𝑇3
∗, obtained by setting the derivative of 

Eqs. (4) and (6) with respect to 𝑇 equal to 0, 
respectively, is the root of the following equation: 

 (ℎ + 𝑟)𝑐𝐷𝑒−
𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) − (ℎ + 𝑟)𝑐𝑃𝑒−𝑟𝑇 (1 −

𝑒−
𝑟𝐷𝑇

𝑃 ) − 𝐴𝑟2𝑒−𝑟𝑇 = 0                            (18) 

And   

ℎ𝑐𝐷𝑒−
𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) − ℎ𝑐𝑃𝑒−𝑟𝑇 (1 − 𝑒−
𝑟𝐷𝑇

𝑃 ) +

𝑐𝐷𝑟𝑒−𝑟𝑀(1 − 𝑒−𝑟𝑇)   
 −𝑐𝑃𝑟𝑒−𝑟𝑇(1 − 𝑒−𝑟𝑀) − 𝐴𝑟2𝑒−𝑟𝑇 − 𝑐(𝐷𝑇 −

𝑃𝑀)𝑟2𝑒−𝑟(𝑀+𝑇) = 0.                                            (19) 
 Eqs. (18) and (19) are the optimality condition of 
Eqs. (6) and (8), respectively. Let 

 𝑓2(𝑇) = (ℎ + 𝑟)𝑐𝐷𝑒
−
𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) − (ℎ +

𝑟)𝑐𝑃𝑒−𝑟𝑇 (1 − 𝑒−
𝑟𝐷𝑇

𝑃 ) − 𝐴𝑟2𝑒−𝑟𝑇                         (20) 

And 

 𝑓3(𝑇 = ℎ𝑐𝐷𝑒−
𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) − ℎ𝑐𝑃𝑒−𝑟𝑇(1 −

𝑒−𝑟𝐷𝑇/𝑃) + 𝑐𝐷𝑟𝑒−𝑟𝑀(1 − 𝑒−𝑟𝑇) 

         −𝑐𝑃𝑟𝑒−𝑟𝑇(1 − 𝑒−𝑟𝑀) − 𝐴𝑟2𝑒−𝑟𝑇 − 𝑐(𝐷𝑇 −
𝑃𝑀)𝑟2𝑒−𝑟(𝑀+𝑇).                                                  (21) 
 
  
Then 
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𝑑𝑓2(𝑇)

𝑑𝑇
=

𝑟

𝑃
[−(ℎ + 𝑟)𝑐𝐷2𝑒−

𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) + (ℎ +

𝑟)𝑐𝑃2𝑒−𝑟𝑇 (1 − 𝑒−
𝑟𝐷𝑇

𝑃 ) + 𝐴𝑃2𝑒−𝑟𝑇] 

             ≥
𝑟

𝑃
[−(ℎ + 𝑟)𝑐𝑃2𝑒−

𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) + (ℎ +

𝑟)𝑐𝑃2𝑒−𝑟𝑇 (1 − 𝑒−
𝑟𝐷𝑇

𝑃 ) + 𝐴𝑃𝑟2𝑒−𝑟𝑇] 

             ≥
𝑟

𝑃
[(ℎ + 𝑟)𝑐𝑃2 (𝑒−𝑟𝑇 − 𝑒−

𝑟𝐷𝑇

𝑃 )] > 0.                                                                        

(22) 
Also,  

 
𝑑𝑓3(𝑇)

𝑑𝑇
=

𝑟

𝑃
[−ℎ𝑐𝐷2𝑒−

𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) + ℎ𝑐𝑃2𝑒−𝑟𝑇 (1 −

𝑒−
𝑟𝐷𝑇

𝑃 ) + 𝐴 Pr2 𝑒−𝑟𝑇 

              +𝑐𝑃2𝑟𝑒−𝑟𝑇(1 − 𝑒−𝑟𝑀) + 𝑐Pr2 (𝐷𝑇 −

𝑃𝑀)𝑒−𝑟(𝑀+𝑇)]  

               ≥
𝑟

𝑃
[−ℎ𝑐𝑃2𝑒−

𝑟𝐷𝑇

𝑃 (1 − 𝑒−𝑟𝑇) +

ℎ𝑐𝑃2𝑒−𝑟𝑇 (1 − 𝑒−
𝑟𝐷𝑇

𝑃 ) + 𝐴Pr2 𝑒−𝑟𝑇 

              +𝑐𝑃2𝑟𝑒−𝑟𝑇(1 − 𝑒−𝑟𝑀) + 𝑐𝑃2(𝐷𝑇 −

𝑃𝑀)𝑒−𝑟(𝑀+𝑇)]  

              ≥
𝑟

𝑃
[ℎ𝑐𝑃2 (∑  ∞

𝑖=0  (1 − (
𝐷

𝑃
)
𝑖

)
(−𝑟𝑇)𝑖

𝑖!
) +

𝐴Pr2 𝑒−𝑟𝑇  

              +𝑐𝑃2𝑟𝑒−𝑟𝑇 (1 − (1 + 𝑟𝑀) (∑  ∞
𝑖=0  

(−𝑟𝑀)𝑖

𝑖!
)) +

𝑐Pr2 𝐷𝑇𝑒−𝑟(𝑀+𝑇)] > 0,                       (23) 

where 1 − (1 + 𝑟𝑀) (∑
(−𝑟𝑀)𝑖

𝑖!

∞
𝑖=0  ) = 1 − 1 − 𝑟𝑀 +

𝑟𝑀 + 𝑟𝑀2 −
𝑟𝑀2

2
−⋯…… .> 0. Consequently, 

𝑓𝑖(𝑇)(𝑖 = 2,3) is also increasing on (0,∞) and we 
have 𝑓𝑖(0) < 0(𝑖 = 2,3), then 

 
𝑑𝑃𝑉𝑖(𝑇)

𝑑𝑇
= {

< 0  if 𝑇 < 𝑇𝑖
∗

= 0  if 𝑇 = 𝑇𝑖
∗

> 0  if 𝑇 > 𝑇𝑖
∗

 for 𝑖 = 1,2,3.     (24) 

4.1.  Some Theorems 
This section is described the useful theorems to 
present the solution procedure of the optimal 
inventory cycle time. 
Theorem 1: 

(1) 
𝑑𝑃𝑉1(𝑇)

𝑑𝑇
= 0 has a unique solution 𝑇1

∗ on (0,∞). 

(2) 
𝑑𝑃𝑉2(𝑇)

𝑑𝑇
= 0 has a unique solution 𝑇2

∗ on (0,∞). 

(3) 
𝑑𝑃𝑉3(𝑇)

𝑑𝑇
= 0 has a unique solution 𝑇3

∗ on (0,∞). 

Proof: The above arguments imply that Theorem 1 
holds. 
Eq. (24) implies that 𝑃𝑉𝑖(𝑇) is decreasing on (0, 𝑇𝑖

∗] 
and increasing on [𝑇𝑖

∗, ∞) for 𝑖 = 1,2,3. Now, 

consider the case of (A) where 𝑀 >
𝑊

𝑃
. Eqs. (4), (6) 

and (8) yield  

𝑃𝑉1
′(𝑊/𝐷) =

𝑒−𝑟𝑊/𝐷

𝑟(1−𝑒−𝑟𝑊/𝐷)
2 [ℎ𝑐𝐷𝑒

−𝑟𝑊/𝑃(𝑒𝑟𝑊/𝐷 − 1) −

ℎ𝑐𝑃(1 − 𝑒−𝑟𝑊/𝑃)+𝑐𝐷𝑟(𝑒𝑟𝑊/𝐷 − 1) − (𝐴 + 𝑐𝑊)𝑟2]                                                          
(25) 
and 

 𝑃𝑉2
′(𝑊/𝐷) =

𝑒−𝑟𝑊/𝐷

𝑟(1−𝑒−𝑟𝑊/𝐷)
2 [(ℎ + 𝑟)𝑐𝐷𝑒

−𝑟𝑀(𝑒𝑟𝑀𝑃/𝐷 −

1) − (ℎ + 𝑟)𝑐𝑃(1 − 𝑒−𝑟𝑀) − 𝐴𝑟2](26) 
We let 

Δ1 = ℎ𝑐𝐷𝑒−𝑟𝑊/𝑃(𝑒𝑟𝑊/𝐷 − 1) − ℎ𝑐𝑃(1 − 𝑒−𝑟𝑊/𝑃) +

𝑐𝐷𝑟(𝑒𝑟𝑊/𝐷 − 1) − (𝐴 + 𝑐𝑊)𝑟2        (27) 

Δ2 = (ℎ + 𝑟)𝑐𝐷𝑒
−𝑟𝑊/𝑃(𝑒𝑟𝑊/𝐷 − 1) − (ℎ + 𝑟)𝑐𝑃(1 −

𝑒−𝑟𝑊/𝑃) − 𝐴𝑟2                                   (28) 

Δ3 = (ℎ + 𝑟)𝑐𝐷𝑒
−𝑟𝑀(𝑒𝑟𝑀𝑃/𝐷 − 1) − (ℎ + 𝑟)𝑐𝑃(1 −

𝑒−𝑟𝑀) − 𝐴𝑟2                                          (29)         
Since 𝑃𝑉2

′(𝑇) is increasing on 𝑇 > 0, we have 
𝑃𝑉2

′(𝑀𝑃/𝐷) = 𝑃𝑉2
′(𝑊/𝐷). So we get that Δ3 > Δ2 if 

𝑀 > 𝑊/𝑃. From Eqs. (25) and (26), we have 
 𝑃𝑉1

′(𝑊/𝐷) − 𝑃𝑉2
′(𝑊/𝐷) =

𝑒−𝑟𝑊/𝐷

𝑟(1−𝑒−𝑟𝑊/𝐷)
2 [𝑐𝐷𝑟(𝑒

𝑟𝑊/𝐷 − 1)(1 − 𝑒−𝑟𝑊/𝑃)                                       

+𝑐Pr (1 − 𝑒−𝑟𝑊/𝑃)] > 0                         (30) 

Therefore, Δ1 > Δ2. Eqs. (28)-(30) yield 
Δ1 < 0 if and only if 𝑃𝑉1

′(𝑊/𝐷) <

0 if and only if 𝑇1
∗ >

𝑊

𝐷
,                           (31) 

Δ2 < 0 if and only if 𝑃𝑉2
′(𝑊/𝐷) <

0 if and only if 𝑇2
∗ >

𝑊

𝐷
                           (32)  

Δ3 < 0 if and only if 𝑃𝑉2
′(𝑀𝑃/𝐷) <

0 if and only if 𝑇2
∗ >

𝑀𝑃

𝐷
,                                  (33) 

Δ3 < 0 if and only if 𝑃𝑉3
′ (
𝑀𝑃

𝐷
) <

0 if and only if 𝑇3
∗ >

𝑀𝑃

𝐷
.                               (34)  

Hence, we have the following results. 
Theorem 2: 
(1) If Δ1 > 0, Δ2 ≥ 0 and Δ3 > 0, then 𝑃𝑉∞(𝑇

∗) =
min{𝑃𝑉∞(𝑇1

∗), 𝑃𝑉∞(𝑊/𝐷)}. Hence 𝑇∗ is 𝑇1
∗ or 𝑊/𝐷 

associated with the least cost. 
(2) If Δ1 > 0, Δ2 < 0 and Δ3 > 0, then 𝑃𝑉∞(𝑇

∗) =
𝑃𝑉∞(𝑇2

∗). Hence 𝑇∗ = 𝑇2
∗. 

(3) If Δ1 > 0, Δ2 < 0 and Δ3 ≤ 0, then 𝑃𝑉∞(𝑇
∗) =

𝑃𝑉∞(𝑇3
∗). Hence 𝑇∗ = 𝑇3

∗. 
(4) If Δ1 ≤ 0, Δ2 < 0 and Δ3 > 0, then 𝑃𝑉∞(𝑇

∗) =
𝑃𝑉∞(𝑇2

∗). Hence 𝑇∗ = 𝑇2
∗. 

(5) If Δ1 ≤ 0, Δ2 < 0 and Δ3 ≤ 0, then 𝑃𝑉∞(𝑇
∗) =

𝑃𝑉∞(𝑇3
∗). Hence 𝑇∗ = 𝑇3

∗. 
Proof: (1) Δ1 > 0, Δ2 ≥ 0 and Δ3 > 0, which imply 
that 𝑃𝑉1

′(𝑊/𝐷) > 0, 𝑃𝑉2
′(𝑊/𝐷) ≥ 0, 𝑃𝑉2

′(𝑀𝑃/𝐷) >
0, and 𝑃𝑉3

′(𝑀𝑃/𝐷) > 0. Eqs. (31)-(34) imply that 
𝑇1
∗ < 𝑊/𝐷, 𝑇2

∗ ≤ 𝑊/𝐷, 𝑇2
∗ < 𝑀𝑃/𝐷 and 𝑇3

∗ < 𝑀𝑃/𝐷, 
respectively. Furthermore, Eq. (24) implies that 
(i) 𝑃𝑉3(𝑇) is increasing on [𝑀𝑃/𝐷,∞). 
(ii) 𝑃𝑉2(𝑇) is increasing on [𝑊/𝐷,𝑀𝑃/𝐷). 
(iii) 𝑃𝑉1(𝑇) is decreasing on (0, 𝑇1

∗] and increasing 
on [𝑇1

∗,𝑊/𝐷). 
Combining (i), (ii) and (iii), we conclude that 
𝑃𝑉∞(𝑇) has the minimum value at 𝑇 = 𝑇1

∗ on 
(0,𝑊/𝐷) and 𝑃𝑉∞(𝑇) has the minimum value at 𝑇 =
𝑊/𝐷 on [𝑊/𝐷,∞). Hence 𝑃𝑉∞(𝑇

∗) = 
min{𝑃𝑉∞(𝑇

∗), 𝑃𝑉∞(𝑊/𝐷)}. Consequently, 𝑇∗ is 𝑇1
∗ or 

𝑊/𝐷 associated with the least cost. 
(2) Δ1 > 0, Δ2 < 0 and Δ3 > 0, which imply that 
𝑃𝑉1

′(𝑊/𝐷) > 0, 𝑃𝑉2
′(𝑊/𝐷) < 0, 𝑃𝑉2

′(𝑀𝑃/𝐷) > 0, 
and 𝑃𝑉3

′(𝑀𝑃/𝐷) > 0. Eqs. (31)-(34) imply that 𝑇1
∗ <
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𝑊/𝐷, 𝑇2
∗ > 𝑊/𝐷, 𝑇2

∗ < 𝑀𝑃/𝐷 and 𝑇3
∗ < 𝑀𝑃/𝐷, 

respectively. Furthermore, Eq. (24) implies that 
(i) 𝑃𝑉3(𝑇) is increasing on [𝑀𝑃/𝐷,∞). 
(ii) 𝑃𝑉2(𝑇) is decreasing on [𝑊/𝐷, 𝑇2

∗] and 
increasing on [𝑇2

∗, 𝑀𝑃/𝐷). 
(iii) 𝑃𝑉1(𝑇) is decreasing on (0, 𝑇1

∗] and increasing 
on [𝑇1

∗,𝑊/𝐷). Combining (i), (ii) and (iii), we 
conclude that 𝑃𝑉∞(𝑇) has the minimum value at 𝑇 =
𝑇1
∗ on (0,𝑊/𝐷) and 𝑃𝑉∞(𝑇) has the minimum value 

at 𝑇 = 𝑇2
∗ on [𝑊/𝐷,∞). Since 𝑃𝑉1(𝑇) > 𝑃𝑉2(𝑇) if 

𝑇 > 0, then 𝑃𝑉∞(𝑇
∗) = 𝑃𝑉∞(𝑇2

∗). Consequently, 𝑇∗ is 
𝑇2
∗. 

(3) Δ1 > 0, Δ2 < 0 and Δ3 ≤ 0, which imply that 
𝑃𝑉1

′(𝑊/𝐷) > 0, 𝑃𝑉2
′(𝑊/𝐷) < 0, 𝑃𝑉2

′(𝑀𝑃/𝐷) ≤ 0, 
and 𝑃𝑉3

′(𝑀𝑃/𝐷) ≤ 0. Eqs. (31)-(34) imply that 𝑇1
∗ <

𝑊/𝐷, 𝑇2
∗ > 𝑊/𝐷, 𝑇2

∗ ≥ 𝑀𝑃/𝐷 and 𝑇3
∗ ≥ 𝑀𝑃/𝐷, 

respectively. Furthermore, Eq. (24) implies that 
(i) 𝑃𝑉3(𝑇) is increasing on [𝑀𝑃/𝐷, 𝑇3

∗] and 
increasing on [𝑇3

∗, ∞]. 
(ii) 𝑃𝑉2(𝑇) is decreasing on [𝑊/𝐷,𝑀𝑃/𝐷]. 
(iii) 𝑃𝑉1(𝑇) is decreasing on (0, 𝑇1

∗] and increasing 
on [𝑇1

∗,𝑊/𝐷). 
Combining (i), (ii) and (iii), we conclude that 
𝑃𝑉∞(𝑇) has the minimum value at 𝑇 = 𝑇1

∗ on 
(0,𝑊/𝐷) and 𝑃𝑉∞(𝑇) has the minimum value at 𝑇 =
𝑇3
∗ on [𝑊/𝐷,∞). Since 𝑃𝑉2(𝑇) is decreasing on 
(0, 𝑇2

∗], 𝑇1
∗ < 𝑊/𝐷 and 𝑇2

∗ ≥ 𝑀𝑃/𝐷 > 𝑊/𝐷, we have 
𝑃𝑉1(𝑇1

∗) > 𝑃𝑉2(𝑇1
∗), 𝑃𝑉2(𝑇1

∗) > 𝑃𝑉2(𝑀𝑃/𝐷) and 
𝑃𝑉2(𝑀𝑃/𝐷) = 𝑃𝑉3(𝑀𝑃/𝐷) > 𝑃𝑉3(𝑇3

∗). Hence, we 
conclude that 𝑃𝑉∞(𝑇) has the minimum value at 𝑇 =
𝑇3
∗ on (0,∞). Consequently, 𝑇∗ is 𝑇3

∗. 
(4) Δ1 ≤ 0, Δ2 < 0 and Δ3 > 0, which imply that 
𝑃𝑉1

′(𝑊/𝐷) ≤ 0, 𝑃𝑉2
′(𝑊/𝐷) ≤ 0, 𝑃𝑉2

′(𝑀𝑃/𝐷) > 0, 
and 𝑃𝑉3

′(𝑀𝑃/𝐷) > 0. Eqs. (31)-(34) imply that 𝑇1
∗ ≤

𝑊/𝐷, 𝑇2
∗ > 𝑊/𝐷, 𝑇2

∗ < 𝑀𝑃/𝐷 and 𝑇3
∗ < 𝑀𝑃/𝐷, 

respectively. Furthermore, Eq. (24) implies that 
(i) 𝑃𝑉3(𝑇) is increasing on [𝑀𝑃/𝐷,∞). 
(ii) 𝑃𝑉2(𝑇) is decreasing on [𝑊/𝐷, 𝑇2

∗] and 
increasing on 𝑇2

∗, 𝑀𝑃/𝐷). 
(iii) 𝑃𝑉1(𝑇) is decreasing on (0,𝑊/𝐷). 
Since 𝑃𝑉1(𝑊/𝐷) > 𝑃𝑉2(𝑊/𝐷) and 𝑃𝑉2

′(𝑊/𝐷) >
𝑃𝑉2

′(𝑇2
∗), combining (i), (ii) and (iii), we conclude 

that 𝑃𝑉∞(𝑇) has the minimum value at 𝑇 = 𝑇2
∗ on 

(0,∞) and consequently, 𝑇∗ is 𝑇3
∗. 

(5) Δ1 ≤ 0, Δ2 < 0 and Δ3 ≤ 0, which imply that 
𝑃𝑉1

′(𝑊/𝐷) < 0, 𝑃𝑉2
′(𝑊/𝐷) < 0, 𝑃𝑉2

′(𝑀𝑃/𝐷) < 0, 
and 𝑃𝑉3

′(𝑀𝑃/𝐷) < 0. Eqs. (31)-(34) imply that 𝑇1
∗ ≥

𝑊/𝐷, 𝑇2
∗ ≥ 𝑊/𝐷, 𝑇2

∗ ≥ 𝑀𝑃/𝐷 and 𝑇3
∗ ≥ 𝑀𝑃/𝐷, 

respectively. Furthermore, Eq. (24) implies that 
(i) 𝑃𝑉3(𝑇) is increasing on [𝑀𝑃/𝐷, 𝑇3

∗] and 
increasing on [𝑇3

∗, ∞]. 
(ii) 𝑃𝑉2(𝑇) is decreasing on [𝑊/𝐷,𝑀𝑃/𝐷]. 
(iii) 𝑃𝑉1(𝑇) is decreasing on (0,𝑊/𝐷). 
Since 𝑃𝑉1(𝑊/𝐷) > 𝑃𝑉2(𝑊/𝐷), combining (i), (ii) 
and (iii), we conclude that 𝑃𝑉∞(𝑇) has the minimum 
value at 𝑇 = 𝑇3

∗ on (0,∞). Consequently, 𝑇∗ is 𝑇3
∗. 

Combining the above arguments, we have 
completed the proof of Theorem 2. 
In the case of (B) where 𝑀 ≤ 𝑊/𝑃, 𝑃𝑉∞(𝑇) can be 
expressed as follows: 

𝑃𝑉∞(𝑇) = {
𝑃𝑉1(𝑇)  if  0 < 𝑇 < 𝑊/𝐷

𝑃𝑉3(𝑇)  if  𝑊/𝐷 ≤ 𝑇.
        (35) 

Eq. (8) yield that 

 𝑃𝑉3
′(𝑊/𝐷) =

𝑒−𝑟𝑊/𝐷

𝑟(1−𝑒−𝑟𝑊/𝐷)
2 [𝑐𝐷(ℎ𝑒

−𝑟𝑊/𝑃 +

𝑟𝑒−𝑟𝑀)(𝑒𝑟𝑊/𝐷 − 1) − 𝑐𝑃(ℎ(1 − 𝑒𝑟𝑊/𝑃)+𝑟(1 −

𝑒−𝑟𝑀)) − 𝐴𝑟2 − 𝑐(𝑊 − 𝑃𝑀)𝑟2𝑒−𝑟𝑀].         (36) 
We let 

 Δ4 = 𝑐𝐷(ℎ𝑒−𝑟𝑊/𝑃 + 𝑟𝑒−𝑟𝑀)(𝑒𝑟𝑊/𝐷 − 1) − 𝑐𝑃(ℎ(1 −

𝑒𝑟𝑊/𝑃)+𝑟(1 − 𝑒−𝑟𝑀)) − 𝐴𝑟2 − 𝑐(𝑊 − 𝑃𝑀)𝑟2𝑒−𝑟𝑀                                                      

(37) 
From Eqs. (28)-(37), we have 

 Δ1 − Δ4 = 𝑐𝐷𝑟(1 − 𝑒−𝑟𝑀)(𝑒𝑟𝑊/𝐷 − 1) + 𝑐𝑃𝑟(1 −

𝑒−𝑟𝑀) − 𝑐𝑊𝑟2(1 − 𝑒−𝑟𝑀) + 𝑃𝑀𝑟2𝑒−𝑟𝑀 > 0.                                             
(38) 
From Eq. (37), we also find that 
Δ4 < 0 if and only if 𝑃𝑉3

′(𝑊/𝐷) <
0 if and only if 𝑇3

∗ > 𝑊/𝐷.                         (39) 
Then, we have the following results. 
Theorem 3: 
(1) If Δ1 > 0, and Δ4 ≥ 0, then 𝑃𝑉∞(𝑇

∗) =
min{𝑃𝑉∞(𝑇1

∗), 𝑃𝑉∞(𝑊/𝐷)}. Hence 𝑇∗ is 𝑇1
∗ or 𝑊/𝐷 

associated with the least cost. 
(2) If Δ1 > 0, and Δ4 < 0, then 𝑃𝑉∞(𝑇

∗) =
min{𝑃𝑉∞(𝑇1

∗), 𝑃𝑉∞(𝑇3
∗)}. Hence 𝑇∗ is 𝑇1

∗ or 𝑇3
∗ 

associated with the least cost. 
(3) If Δ1 ≤ 0, and Δ4 < 0, then 𝑃𝑉∞(𝑇

∗) = 𝑃𝑉∞(𝑇3
∗). 

Hence 𝑇∗ = 𝑇3
∗. 

Proof: Omitted 
4.2.  The algorithm 
In this section, we would combine Section 3.1. to 
outline the algorithm to help us to decide the 
optimal replenishment cycle time and optimal 
production quantity. 
The algorithm: 
Step 1: If 𝑀 ≤ 𝑊/𝑃, then go to Step 3. Otherwise, go 
to Step 2. Step 2: 
(1) If Δ1 > 0, Δ2 ≥ 0 and Δ3 > 0, then 𝑇∗ is 𝑇1

∗ or 
𝑊/𝐷 associated with the least cost. 
(2) If Δ1 > 0, Δ2 < 0 and Δ3 > 0, then 𝑇∗ = 𝑇2

∗. 
(3) If Δ1 > 0, Δ2 < 0 and Δ3 ≤ 0, then 𝑇∗ = 𝑇3

∗. 
(4) If Δ1 ≤ 0, Δ2 < 0 and Δ3 > 0, then 𝑇∗ = 𝑇2

∗. 
(5) If Δ1 ≤ 0, Δ2 < 0 and Δ3 ≤ 0, then 𝑇∗ = 𝑇3

∗. 
Step 3: 
(1) If Δ1 > 0, and Δ4 ≥ 0, then 𝑇∗ is 𝑇1

∗ or 𝑊/𝐷 
associated with the least cost. 
(2) If Δ1 > 0, and Δ4 < 0, then 𝑇∗ is 𝑇1

∗ or 𝑇3
∗ 

associated with the least cost. 
(3) If Δ1 ≤ 0, and Δ4 < 0, then 𝑇∗ = 𝑇3

∗. 
5.  Numerical examples 
To illustrate the results, let us apply the proposed 
method to solve the following numerical examples. 
We use the LINGO software to run the algorithm. 
The following parameters 𝐴 = $5/ order, 𝑐 = $1, 
𝐷 = 15 units, 𝑃 = 20 units and ℎ = 0.1 /unit are 
used from Examples 18. In addition, 𝑟 = 0.3 is used 
from Examples 1-6. 
Example 1. If 𝑀 = 30 and 𝑊 = 100, then 𝑊/𝑃 =
5 < 𝑀, Δ1 = 19.885 > 0, Δ2 = 1.889 > 0 and Δ3 =
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112.063 > 0. Using Step 2(1), we get 𝑇∗ = 𝑊/𝐷 =
6.667 and 𝑃𝑉∞(𝑇

∗) = 124.738. 
Example 2. If 𝑀 = 30 and 𝑊 = 30, then 𝑊/𝑃 =
1.5 < 𝑀, Δ1 = 0.611 > 0, Δ2 = −0.204 < 0 and Δ3 =
112.063 > 0. Using Step 2(2), we get 𝑇∗ = 𝑇2

∗ =
2.745 and 𝑃𝑉∞(𝑇

∗) = 65.239. 
Example 3. If 𝑀 = 2 and 𝑊 = 30, then 𝑊/𝑃 =
1.5 < 𝑀, Δ1 = 0.611 > 0, Δ2 = −0.204 < 0 and Δ3 =
−0.204 < 0. Using Step 2(3), we get 𝑇∗ = 𝑇3

∗ =
2.691 and 𝑃𝑉∞(𝑇

∗) = 65.242. 
Example 4. If 𝑀 = 30 and 𝑊 = 10, then 𝑊/𝑃 =
0.5 < 𝑀, Δ1 = −0.346 < 0, Δ2 = −0.421 < 0 and 
Δ3 = 112.063 > 0. Using Step 2(4), we get 𝑇∗ =
𝑇2
∗ = 2.745 and 𝑃𝑉∞(𝑇

∗) = 65.239. 
Example 5. If 𝑀 = 2 and 𝑊 = 10, then 𝑊/𝑃 =
0.5 < 𝑀, Δ1 = −0.346 < 0, Δ2 = −0.421 < 0 and 
Δ3 = −0.204 < 0. Using Step 2(5), we get 𝑇∗ = 𝑇3

∗ =
2.691 and 𝑃𝑉∞(𝑇

∗) = 65.242. 
Example 6. If 𝑀 = 2 and 𝑊 = 50, then 𝑊/𝑃 =
2.5 > 𝑀, Δ1 = 2.945 > 0, and Δ4 = 0.755 > 0. Using 
Step 3(1), we get 𝑇∗ = 𝑇1

∗ = 1.345 and 𝑃𝑉∞(𝑇
∗) =

76.634. 
Example 7. If 𝑟 = $0.1/$,𝑀 = 2 and 𝑊 = 42, then 
𝑊/𝑃 = 2.1 > 𝑀, Δ1 = 0.029 > 0, and Δ4 =
−0.018 < 0. Using Step 3(2), we get 𝑇∗ = 𝑇3

∗ = 3.14 
and 𝑃𝑉∞(𝑇

∗) = 180.38. 
Example 8. If 𝑟 = $0.01/$,𝑀 = 2 and 𝑊 = 42, 
then 𝑊/𝑃 = 2.1 > 𝑀, Δ1 = −0.00029 < 0, and Δ4 =
−0.00034 < 0. Using Step 3(3), we get 𝑇∗ = 𝑇3

∗ =
4.549 and 𝑃𝑉∞(𝑇

∗) = 1710.269. 
6.   Conclusion 
This paper presents the discounted cash-flows 
(DCF) approach for the analysis of the optimal 
inventory policy in the presence of trade credit 
depending on the producing quantity. If 𝑄 < 𝑊, the 
delay in payment is not permitted. Otherwise, the 
fixed trade period 𝑀 is permitted. There are two 
cases (1) 𝑀 > 𝑊/𝑃 and (2) 𝑀 ≤ 𝑊/𝑃 to be 
explored. Theorem 2 gives the solution procedure to 
find 𝑇∗ when 𝑀 > 𝑊/𝑃. Theorem 3 gives the 
solution procedure to find 𝑇∗ when 𝑀 ≤ 𝑊/𝑃. 
Numerical examples are given to illustrate 
Theorems 2 and 3. Furthermore, an algorithm to 
find the optimal replenishment cycle time is 
presented. 
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