Interlinkage of United Nations' SDG 1 "No Poverty" and SDG 2 "Zero Hunger" Goals: A Study on India with World Development Indicators

Dr. Paritosh Chandra Sinha¹ and Koyel Majumder²

 ¹ Department of Commerce, Rabindra Mahavidyalaya, Hooghly, W.B. e-mail: <u>paritoshchandrasinha@gmail.com</u>
 ² Department of Commerce, Rabindra Mahavidyalaya, Hooghly, W.B. E-mail: <u>koyelmajumder375@gmail.com</u>

Abstract

The United Nations' (UNs') Sustainable Development Goals (SDGs) provide a comprehensive framework for addressing global challenges ranging from poverty and hunger to inequality and climate change. Among these, SDG 1, "No Poverty," and SDG 2, "Zero Hunger," are intrinsically linked since the both seek to eradicate the root causes of deprivation, suffering, and malnutrition, which disproportionately affect vulnerable populations worldwide. These goals are not isolated objectives but are part of an integrated approach to achieving broader social and economic development. In exploring this expected interrelationship of interconnectedness, the present study has examined the World Bank's sustainable performance indicators for SDG 1 and SDG 2 along with the World Development Indicator variables empirically over the study period of 2004 to 2022. The study has employed correlation analysis, causality analysis, and cointegration analysis methodologically. The results show that with the sustainable performance indicator (SPI) data, there exists little causality or interlinkage between "No Poverty" i.e., SDG 1 and "Zero Hunger" i.e., SDG 2, in the context of India. The variable measures are either insufficient to examine the true theoretical interrelations between the variables of two sustainable development goals or the development performance of India is an exception of the said theoretical relationship, if so, exist in reality. However, there is presence of long-run speed of adjustment which runs out of self-targeting motives for both the SDG variables rather than through the impetus from the other development variable. Nonetheless, the world development indicators appeared to be ineffective in addressing the "Zero Hunger" as a sustainable development goal while the same are very much effective to address the goal for "No Poverty".

Key Words: Interlinkage of Sustainable Development Goals (SDGs); No Poverty and Zero Hunger; Causality and Intercorrelation; Sustainable Performance Indicator (SPI); and World Development Indicator (WDI).

Copyright © 2024 The Author(s)

Interlinkage of United Nations' SDG 1 "No Poverty" and SDG 2 "Zero Hunger" Goals: A Study on India with World Development Indicators

Introduction

The United Nations' (UNs') Sustainable Development Goals (SDGs), adopted in 2015 as part of the 2030 Agenda for Sustainable Development, provide a comprehensive framework for addressing global challenges ranging from poverty and hunger to inequality and climate change. Among these, SDG 1, "No Poverty," and SDG 2, "Zero Hunger," are intrinsically linked, as both seek to eradicate the root causes of deprivation, suffering, and malnutrition, which disproportionately affect vulnerable populations worldwide. These goals are not isolated objectives but are part of an integrated approach to achieving broader social and economic development.

India, home to over 1.4 billion people, faces a unique set of challenges in realizing these two SDGs. Despite significant progress in poverty reduction and food security over the past few decades, the country continues to grapple with high levels of poverty, malnutrition, and food insecurity, particularly in rural and marginalized areas. Understanding the nature of interlinkages and causality between SDG 1 and SDG 2 in the Indian context is critical for formulating effective policies and interventions that address both issues simultaneously.

This study aims to explore the complex relationship between poverty and hunger in India by analysing the roles of the key World Development Indicators (WDIs) that measure and contribute to the progress toward these two SDGs. By examining the correlation between the two SDGs with the economic, social, nutritional and agricultural indicators, the paper highlights the hidden challenges and opportunities India is facing in achieving the targets of "No Poverty" and "Zero Hunger" by 2030. The findings will provide insights into how targeted interventions can contribute to sustainable development and provide a pathway for policy-makers to design holistic solutions that tackle the root causes of poverty and hunger in the country.

The rest of the study is structured as follows. In Section-2, the study reviews the literature briefly and identifies the research gap. In Section-3, it describes the data and methodology, identifies the variables and puts forth the hypothesis. In Section-4, it depicts the results and analyses the findings. In

Section-5, the study concludes along with a few observations as recommendations.

Literature Review

The interlinkage between the UNs' SDG 1 "No Poverty" and SDG 2 "Zero Hunger" has garnered significant academic attention in recent years, particularly given the pervasive nature of poverty and hunger in many developing nations, including India. The relationship between these two goals is complex and multifaceted, involving economic, social, and environmental factors that often reinforce each other. This literature review examines existing research on the connections between poverty and hunger, with a particular focus on India, and highlights the role of World Development Indicators (WDIs) in measuring and understanding these connections.

According to FAO (2015), poverty is both a cause and a consequence of hunger, where individuals those are living in poverty often lack access to adequate food, and food insecurity, in turn, exacerbates poverty by hindering people's ability to engage in productive economic activities. There exists a symbiotic relationship between food waste, an inverse proxy for poverty and food security, that for hunger (Rocco, 2017). This symbiotic relationship is especially pronounced in the rural and marginalized communities, where lack of access to education, healthcare, and financial resources further deepens food insecurity (Siddiqui, et al., 2020). Rasheed (2023) has emphasized that dynamics of poverty and hunger are deeply interconnected and mutually reinforcing. In examining the nexus of poverty, malnutrition and diseases in Africa, Adeyeye, et al., (2023) have found that high population growth, inefficiency in agricultural and industrial production, poor governance and corruption, epidemic diseases and covid pandemic, poor and inadequate health infrastructure etc. have contributed to poverty and malnutrition in Africa. These all recognize interdependence between SDG 1 and SDG 2 and underscore the necessity of addressing both issues in tandem, rather than in isolation.

Now, India represents a unique case for studying the interlinkage of SDGs 1 and SDG 2. Despite significant progress in poverty reduction and improvements in food security over the past few decades, India remains home to a large proportion of the world's poor and food-insecure population. According to the World Bank (2020), the survey year of 2011 finds at national level 22.50% of India's population lives below the poverty line (US\$ 1.90 a day), with rural areas (26.30%) disproportionately affected (as compared to the urban areas with 14.20%) while India ranks along with Nigeria, the top two countries in the world for malnutrition, with an estimated mortality rate upper and lower bound of 3.3% and 4.0%, 3.1% and 3.8%, and 2.8% and

3.4% of children under in 2018, 2019 and 2021 (UNICEF, 2019; UNICEF, 2021; UNICEF, 2023). These statistics underscore the continued challenges before India in achieving both SDG 1 and SDG 2.

However, a brief review of the literature shows that there is least research on the present research agenda: possible interlinkage of the United Nations' sustainable development goals viz., SDG 1 "No Poverty" and SDG 2 "Zero Hunger" specifically on Indian context with the use of the World Development Indicators. This study seeks to fill this exact research gap.

Variables, Data and Methodology

The study uses the index values from the World Bank's sustainable performance indicator (SPI) database for the SDG 1 and SDG 2 for India from the time period of 2004 to 2022. It also uses the World Bank's World Development Indicators (WDIs) for SDG indicator targets accomplished by India in assessing the progress towards SDGs 1 and SDG 2. These WDIs are pivotal in understanding the broader socio-economic context of poverty and hunger. The WDIs compiled by the World Bank include a range of economic, social, and environmental data points that can help measure the progress of countries towards achieving these goals. These encompass the income levels, food availability, nutrition outcomes, agricultural productivity, and other dimensions that directly or indirectly affect poverty and hunger.

A scrutiny of the UN's SDGs, their targets, and proposed indicators shows that SDG 1 includes – a country's development actions targets by 2030 to (i) eradicate extreme poverty for all people and it targets people living on less than \$ 1.25 a day, (ii) to reduce its population below poverty level by half the proportion of men, women and children of all ages, (iii) implement nationally appropriate social protection systems and measures for all, including floors, and achieve substantial coverage of the poor and the vulnerable, (iv) ensure that the poor and the vulnerable have equal rights to economic resources, as well as access to basic services, ownership and control over land and other forms of property, inheritance, natural resources, appropriate new technology and financial services, including microfinance, and (v) build resilience of the poor and vulnerable and reduce their exposure and vulnerability to climate-related extreme events and other economic, social and environmental shocks and disasters.

The targets, and proposed indicators for SDG 2 includes – a country's development action targets by 2030 to (i) end hunger and ensure access by the poor and vulnerable including infants to safe, nutritious and sufficient food all year round, (ii) end all forms of malnutrition, including achieving targets on stunting and wasting in children under 5 years of age by 2025, and address the nutritional needs of adolescent girls, pregnant and lactating

women and older persons, (iii) increase the agricultural productivity and incomes of small-scale food producers, in particular women, indigenous peoples, family farmers, pastoralists and fishers, including through secure and equal access to land, other productive resources and inputs, knowledge, financial services, markets and opportunities for value addition and non-farm employment, (iv) ensure sustainable food production systems and implement resilient agricultural practices that increase productivity and production, help maintain ecosystems, strengthen capacity for adaptation to climate change, extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality, and (v) maintain the genetic diversity of seeds, cultivated plants and farmed and domesticated animals and their related wild species, including through soundly managed and diversified seed and plant banks at the national, regional and international levels, and promote access to and fair and equitable sharing of benefits arising from the utilization of genetic resources and associated traditional knowledge.

The study, firstly, employs the Spearman's correlation coefficient analysis to explore associations between the two SDG SPI variables. Then, it performs the Augmented Dickey-Fuller (ADF) Unit Root tests for examining the stationarity nature of the SDG variable at different level of significance. The ADF unit root test becomes a handy research tool for examining suitability of application of different causality test methods viz., the Granger causality test, Toda-Yamoto Wald Test Causality Method, Single equation cointegration test method, Johansen System Cointegration Method, and Autoregressive Distributed Lagged (ARDL) Model for interconnectedness between the variables. If the variables are all I(0) in nature, then Granger causality test method along with the Single equation cointegration test method can be applied. If the variables are all I(1) in nature, then Johansen System Cointegration Method can be applied. However, if the variables are I (0) and/or I(1), then the ARDL model can be applied since it has an inbuilt VAR cointegration system. Nonetheless, if either of the variables are at most I(2) in nature and none are I(0) in nature, then the Toda-Yamoto Wald Test Causality Method can be applied for identifying the causality or cointegration between the variables.

The present study proposes the following theoretical proposition for the interconnectedness between the two development goals SDG 1 "No Poverty" and SDG 2 "Zero Hunger".

Research Proposition: Nation's poverty and hunger are interwikied socioeconomic phenomena and the both have multifaceted dimensions of sustainability and development where nations' poverty depict its people's economic deprivation and the hunger depict their physiological deprivation. **Research Hypothesis:** In exploring the above, the study has the following four specific research hypotheses while the general null is that the variables in H_{01} , H_{02} , H_{03} , and H_{04} have insignificant relationships.

 H_{01} : The SPI index values of SDG 1 and SDG 2 are significantly correlated.

 H_{02} : The SPI index values of SDG 1 and SDG 2 have significant bidirectional causal interrelationships.

 H_{03} : The WDI variables have significant correlation coefficients with the SPI index values of SDG 1.

 H_{04} : The WDI variables have significant correlation coefficient with the SPI index values of SDG 2.

Now, for simplicity and convenience of the readers to understand the implications of H_{03} and H_{04} , the present study includes the concerned variables of the World Development Indicators in Appendix 1 towards explaining their interlinkage with the SDG 1 and SDG 2 in terms of their significant correlation coefficients only. This also allows the author to make the study brief and focused as well.

Results and Findings

In categorising the results and findings of the study, we firstly depict the trend value of the World Bank's SPI data for SDG 1 and SDG 2 in Table 1. The index value of SDG 1 refers to the degree of poverty level, and this means that, at the magnitude of 1 for its index value, the goal for "No Poverty" will be achieved. The blue line in the figure shows that India's performance in terms of SDG 1 remained stagnant at the index value of 0.667 from 2005 to 2014, and then declined to 0.571 and 0.286 in 2015 and 2016 respectively and the same remained at that level till 2019 and thereafter, its magnitude increased and the index value in 2020 and during 2021 – 2022 were 0.571 and 0.857 respectively. Therefore, it is vividly visible that India is moving positively and by 2030, that is, with in the next six years, there is a good possibility of getting the target of "No Poverty" fulfilled.

In terms of India's performance for "No Hunger" that is, SDG 2 SPI variable, Figure 1 depicts that achieving the goal of "Zero Hunger" is not far distant since the index value which has been staying at about 0.667 in 2004 has been improved to 0.667 in 2005 and interestingly reached to the ideal or target index value of 1 during the period of 2006 to 2009, but thereafter declined to 0.875 in 2010, to 0.625 in 2011 and continued at that level for two consecutive years in 2012 and 2013. The index value improved to 0.778 in 2014, took momentum to 0.90 in 2015 and stayed at that level for next four consecutive years from 2016 to 2019 and finally, it reached to 0.909 in 2020, 0.90 in the consecutive two year of 2021 and 2022. Therefore, the target goal is remained unreached as yet by 10% from the target index value of 1.

Figure 1: Observed SPI Data for SDG 1 and SDG 2 for India from 2004 to 2022

(Data Source: World Bank's Statistical Performance Indicators Database) (Database link: <u>https://databank.worldbank.org/source/statistical-performance-indicators-(spi)</u>)

Now, let us explore the observed correlation between the SPI data for SDG 1 and SDG 2 for India. In Table 1, the study shows that there is insignificant correlation coefficient (at ten percent level of significance) between the two performance index variables for India. The low number of the data size may be one factor for such insignificant relationship. Further, lesser variability in the values of the magnitudes for the performance index values might be another reason.

Table 1: Observed Correlation Coefficients between SDG 1 and SDG 2

Sample Data Period: 2004 - 2022						
SDI SPI Variables	SPI_SDG_1	SPI_SDG_2				
Included observations:	19	19				
Covariance Matrix:						
SPI_SDG_1	0.038380	-0.006857				
SPI_SDG_2	-0.006857	0.016873				
Correlation Matrix:						
SPI_SDG_1	1.000000	-0.269470				
SPI_SDG_2	-0.269470	1.000000				
t-Statistic Matrix:						
SPI_SDG_1		-1.153733				
SPI_SDG_2	-1.153733					
t-Statistic Probability Matrix						

SPI_SDG_1		0.2646
SPI_SDG_2	0.2646	

Table 2: Augmented Dickey-Fuller (ADF) Test Results for SDG 1 andSDG 2 during 2004 - 2022

[H₀: SDG 1 has unit root; H₁: SDG 1 does not have unit root] (Table Source: Authors' Own Compilation in EViews 10)

Statistics	With Level and Intercept		s With Level and With Level and 1st I Intercept Trend & and 1 Intercept		1st Dif and In	1st Difference and Intercept		2nd Difference and Trend &	
SDG 1 SDG 2 SDG 1		SDG 1 SDG 2		SDG 2	SDG 2 SDG 1 SDG 2		SDG 1	SDG 2	
t-	-	-	-	-	-	-	-	-	
Statistics	1.73576	3.09294	3.43285	2.9688	3.4803	2.82646	3.25383	2.74801	
Sig. Level	0.3969	0.0464	0.0846	0.168	0.0222	0.0754	0.1074	0.2321	
I(O) / I(1)				-					
at a									
<0.10	-	I(O)	I(O)		I(1)	I(1)	-	-	
I(0) / I(1)				-					
at a									
< 0.050	-	I(O)	-		I(1)	-	-	-	

Our results for the Augmented Dickey-Fuller (ADF) unit root test for checking of the stationarity of the two series of values of the variables SDG 1 and SDG 2, in Table 2, shows that at a higher viz., ten percent level of significance, the level data of the two time series variable of SDG 1 and SDG 2 are I(0) in nature. Here, the variable of SDG 1 becomes I(0) once the same is considered for its level data with trend and intercepts effects while the variable of SDG 2 data becomes I(0) in nature once the same data is considered at level is considered along with intercept but not with trend and intercept. In the other words, the ADF test results clearly show that the SDG 2 variable, that is, "Zero Hunger" has no trend component within it while SDG 1, that is, "No Poverty" has a trend component within it. However, if we re-examine the ADF unit root test results at higher viz., five percent level of significance, the level data of SDG 2 with intercept only becomes stationary while with the trend and intercept effect, none of SDG 1 and SDG 2 are stationary, that is, at five percent level of significance, the variable SDG 1 is I(0) in nature and SDG 2 is I(1) in nature.

Therefore, Table 2 suggests that depending upon the choice for our selection of acceptance level of significance in considering the stationarity level, the present study has some flexibility to apply the Pairwise Granger causality test method and the ARDL method simultaneously. Nonetheless, in Table 3, our results with the Pair-wise Granger causality test (at the use of the lags of 2) of the SDG 1 and SDG 2 variables show that none of the two variables has significant bidirectional causal relationship in India. Therefore, the expected relationship of interconnectedness between SDG 1 and SDG 2 is not found with the Indian data in Table 2.

Table 3: Pair-Wise Granger Causality Test Results for SDG 1 and SDG 2during 2004 – 2022

(Table Source: Authors' Own Compilation in EViews 10)

Pairwise Granger Causality Tests			
Date: 11/15/24 Time: 16:05			
Sample: 2004 - 2022			
Lags: 2			
Null Hypothesis:	Obs	F -	Prob.
SPI_SDG_2 does not Granger Cause	17	0.2488	0.7837
SPI SDG 1 does not Granger Cause	17	0.47536	0.6329

Table 4: ARDL (Unrestricted) Model Results Explaining SDG 1 withSDG2

(Table Source: Authors' Own Compilation in EViews 10)

Dependent Variable	: SPI_SDG_1			
Method: ARDL				
Date: 11/15/24 Ti	ime: 16:09			
Sample (adjusted):	2008 - 2022			
Included observatio	ns: 15 after ad	djustments		
Maximum depender	nt lags: 4 (Aut	omatic selec	tion)	
Model selection met	hod: Akaike in	nfo criterion	(AIC)	
Dynamic regressors	(4 lags, autor	natic): SPI S	SDG 2	
Fixed regressors: C	@TREND			
Number of models e	evaluated: 20			
Selected Model: ARI	DL (4, 0)			
Variable	Coefficient	Std.	t-	Prob.*
SPI_SDG_1(-1)	1.025352	0.287928	3.561139	0.0074
SPI SDG 1(-2)	-0.63277	0.46927	-1.3484	0.2145
SPI_SDG_1(-3)	-0.09749	0.441233	-0.22094	0.8307
<u>SPI_SDG_1(-4)</u>	-0.56457	0.309188	-1.82597	0.1053
SPI_SDG_2	-0.08278	0.231153	-0.35814	0.7295
С	1.131118	0.408287	2.770397	0.0243
(@TREND	-0.02871	0.012375	-2.32045	0.0489
R-squared	0.860786	Mean de	pendent	0.577933
Adjusted R-	0.756376	S.D. dep	endent var	0.198617
S.E. of regression	0.098034	Akaike ir	nfo	-1.50228
Sum squared	0.076885	Schwarz	criterion	-1.17186
Log likelihood	18.26711	Hannan-	Quinn	-1.5058
F-statistic	8.244281	Durbin-V	Watson stat	2.405124
Prob(F-statistic)	0.004452			
*Note: p-values and	any subseque	ent tests do :	not account	for model

Table 5: ARDL Model (Long Run Form and Bounds Test) ResultsExplaining SDG 1 with SDG 2

		ARDL	Long	Run	Form	and	Bounds	Test	
--	--	------	------	-----	------	-----	--------	------	--

Dependent variable:	D(SPI SDC	G 1)					
Selected Model: ARD	L (4, 0)						
Case 5: Unrestricted Constant and Unrestricted Trend							
Date: 11/15/24 Tin	ne: 16:17						
Sample: 2004 2023							
Included observation	s: 15						
Conditional Error Correction Regression							
Variable	Coefficie	Std. Error	t-Statistic	Prob.			
С	1.131118	0.408287	2.770397	0.0243			
(a)TREND	-	0.012375	-2.320448	0.0489			
SPI SDG 1(-1)*	-	0.386802	-3.281960	0.0112			
SPI SDG 2**	-	0.231153	-0.358135	0.7295			
D(SPI SDG 1(-1))	1.294820	0.343716	3.767120	0.0055			
D(SPI SDG 1(-2))	0.662054	0.420847	1.573146	0.1543			
D(SPI SDG 1(-3))	0.564569	0.309188	1.825972	0.1053			
<u>* p-value incompati</u>	ble with t-l	Bounds dis	tribution.				
** Variable interprete	ed as Z = Z	(-1) + D(Z).					
Levels Equation							
Case 5: Unrestricted	Constant a	and Unresti	ricted Trend				
Variable	Coefficie	Std. Error	t-Statistic	Prob.			
SPI SDG 2	_	0 180963	0 360350	0 7070			
EC = SPI SDG 1 - (-0.0652*SPI SDG 2)							
EC = SPI SDG 1 - (-0)	0.0652*SPI	SDG 2)	-0.300339	0.1219			
EC = SPI SDG 1 - (-0 F-Bounds Test).0652*SPI	SDG 2) Null Hypotl	hesis: No lev	vels relationship			
<u>EC = SPI SDG 1 - (-(</u> F-Bounds Test Test Statistic	0.0652*SPI Value	SDG 2) Null Hypotl Signif.	nesis: No lev I(0)	vels relationship I(1)			
<u>EC = SPI SDG 1 - (-(</u> <u>F-Bounds Test</u> <u>Test Statistic</u>	0.0652*SPI Value	SDG 2) Null Hypotl Signif.	nesis: No lev I(0) Asymptotic	vels relationship I(1)			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic	0.0652*SPI Value 5.385648	SDG 2) Null Hypotl Signif.	nesis: No lev I(0) Asymptotic 5.59	vels relationship I(1) 6.26			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k	0.0652*SPI Value 5.385648 1	SDG 2) Null Hypoth Signif.	nesis: No lev I(0) Asymptotic 5.59 6.56	0.7279 vels relationship I(1) 6.26 7.3			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k	0.0652*SPI Value 5.385648 1	SDG 2) Null Hypotl Signif. 10% 5% 2.5%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46	0.7279 vels relationship I(1) 6.26 7.3 8.27			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k	0.0652*SPI Value 5.385648 1	5% 2.5% 1%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74	0.7279 vels relationship I(1) 6.26 7.3 8.27 9.63			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size	0.0652*SPI Value 5.385648 1 15	SDG 2 Null Hypotl Signif. 10% 5% 2.5% 1%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp	0.7279 vels relationship I(1) 6.26 7.3 8.27 9.63 ole: n=30			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size	0.0652*SPI Value 5.385648 1 15	<u>SDG 2)</u> Null Hypotl Signif. <u>10%</u> 2.5% <u>1%</u> 10%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp 6.01	0.7279 vels relationship I(1) 6.26 7.3 8.27 9.63 ple: n=30 6.78			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size	0.0652*SPI Value 5.385648 1 15	<u>SDG 2)</u> Null Hypotl Signif. <u>10%</u> 2.5% <u>1%</u> 10% 5%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp 6.01 7.36	0.7279 vels relationship I(1) 6.26 7.3 8.27 9.63 ole: n=30 6.78 8.265			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size	0.0652*SPI Value 5.385648 1 15	SDG 2) Null Hypotl Signif. 10% 2.5% 1%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp 6.01 7.36 10.605	0.7279 vels relationship I(1) 6.26 7.3 8.27 9.63 ole: n=30 6.78 8.265 11.65			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size t-Bounds Te	0.0652*SPI Value 5.385648 1 15 15 st	SDG 2) Null Hypotl Signif. 10% 2.5% 1% 10% 5% 1% Null Hypotl	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp 6.01 7.36 10.605 nesis: No lev	0.7279 vels relationship I(1) 6.26 7.3 8.27 9.63 ole: n=30 6.78 8.265 11.65 vels relationship			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size t-Bounds Te Test Statistic	0.0652*SPI Value 5.385648 1 15 15 st Value	Null Hypotl Signif. 10% 2.5% 2.5% 1% 10% 5% 1% Null Hypotl Signif.	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp 6.01 7.36 10.605 nesis: No lev I(0)	$ \begin{array}{r} 0.7279 \\ \hline vels relationship \\ I(1) \\ \hline 6.26 \\ \hline 7.3 \\ \hline 8.27 \\ \hline 9.63 \\ \hline ble: n=30 \\ \hline 6.78 \\ \hline 8.265 \\ \hline 11.65 \\ \hline vels relationship \\ \hline I(1) \\ \hline \end{array} $			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size t-Bounds Te Test Statistic t-statistic	0.0652*SPI Value 5.385648 1 15 15 st Value	SDG 2) Null Hypotl Signif. 10% 2.5% 1% 10% 5% 1% Signif. 1%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp 6.01 7.36 10.605 nesis: No lev I(0) -3.13	$\begin{array}{r} 0.7279 \\ \hline vels relationship \\ I(1) \\ \hline 6.26 \\ \hline 7.3 \\ \hline 8.27 \\ 9.63 \\ \hline 0le: n=30 \\ \hline 6.78 \\ \hline 8.265 \\ \hline 11.65 \\ \hline vels relationship \\ I(1) \\ \hline -3.4 \\ \hline \end{array}$			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size t-Bounds Te Test Statistic t-statistic	0.0652*SPI Value 5.385648 1 15 15 st Value -	SDG 2) Null Hypotl Signif. 10% 2.5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 00% 5% 10% 5% 10% 5%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp 6.01 7.36 10.605 nesis: No lev I(0) -3.13 -3.41	0.7279 $rels relationship$ $I(1)$ 6.26 7.3 8.27 9.63 $relationship$ $I(1)$ -3.4 -3.69			
EC = SPI SDG 1 - (-(F-Bounds Test Test Statistic F-statistic k Actual Sample Size t-Bounds Te Test Statistic t-statistic	0.0652*SPI Value 5.385648 1 15 15 st Value	Null Hypotl Signif. 10% 5% 10% 5% 1% Null Hypotl Signif. 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 2.5% 2.5% 2.5%	nesis: No lev I(0) Asymptotic 5.59 6.56 7.46 8.74 Finite Samp 6.01 7.36 10.605 nesis: No lev I(0) -3.13 -3.41 -3.65	$\begin{array}{r} 0.7279\\\hline \hline vels \ relationship\\ I(1)\\\hline \hline 6.26\\\hline 7.3\\\hline 9.63\\\hline 9.63\\\hline ole: n=30\\\hline 6.78\\\hline 8.265\\\hline 11.65\\\hline vels \ relationship\\\hline I(1)\\\hline -3.4\\\hline -3.69\\\hline -3.96\\\hline \end{array}$			

Given the absence of interrelationship and collinearity between SDG 1 and SDG 2 variables for India, now it becomes imperative to go for further analysis of the two variables with the autoregressive distributed lag (ARDL) model. The model becomes handy for exploring long-run adjustment speed between two or more stationary or non-stationary variable in the nature of I(0) and / or I(0) but none being I(2) in nature. Our data for the SDG 1 and SDG 2 are I(0) in nature at ten percent level of significance while I(1) and I(0) in nature respectively at five percent level of significance, therefore, the present study does not need to transform the data for making it I(0) or I(1) in nature.

The results in the ARDL model with SDG 1 being the explained variable and SDG 2 being the explanatory variable are shown in Table 4, Table 5 and Table

6. Table 4 shows the unrestricted or unconditional version of the model while Table 5 and Table 6 show the restricted or conditional versions of the model. In Table 5, the conditional version of the ARDL model is the long-run form (along with bound test results) of the model while in Table 6, the model shows the results with respect to the conditional error correction version of the model. Nonetheless, the study performs the ARDL model with the SDG 2 as explained variable and SDG 1 being the explanatory variable in Table 7 (for the unrestricted version), Table 8 (for the long-run form along with its boundtest results) and Table 9 (for the conditional error correction version).

Our results, in Table 4, show that the SDG 2 variable has insignificant one year lagged impact on the SDG 1 variable while there exists significant trend effect. Besides, the SDG 1 variable shows significant coefficient value for the constant intercept term and this suggests for the presence of imbedded structural effect in improving the performance of the SDG 1 variable in India. Nonetheless, the model has significant value for the adjusted R-square parameter suggesting that with the SDG 2 as an explanatory variable, the model can explain 75.6376 percent variations in the SDG 1 variable.

In Table 5, the study shows that the conditional long-run form of the ARDL model has insignificant bound-test results suggesting the null-hypothesis that there exists no level relationship between the variables SDG 1 and SDG 2 has been accepted. The t-bound test statistics result also confirms the same. The table further shows that the SDG 1 variable has significant one-period lag effect (that is, long run effect), trend effect and constant intercept effect as well. Nonetheless, there is presence of short-run effect of the SDG 1 variable as reported with the significant coefficient value for the D(SPI_SDG_1(-1)) parameter.

Table 6: ARDL Model (Error Correction Model) Results Explaining SDG 1with SDG 2

ARDL Error Correction Regression							
Dependent Variable:	Dependent Variable: D(SPI SDG 1)						
Selected Model: ARD	L (4, 0)						
Case 5: Unrestricted	Constant a	and Unrest	ricted Trend				
Date: 11/15/24 Tin	ne: 16:27						
Sample: 2004 2023							
Included observation	s: 15						
ECM Regression							
Case 5: Unrestricted	Constant a	and Unrest	ricted Trend				
Variable	Coefficie	Std. Error	t-Statistic		Prob.		
С	1.131118	0.348653	3.244255	0.0118			
<i>a</i>TREND	-	0.011568	-2.482143	0.0380			
D(SPI_SDG_1(-1))	1.294820	0.323961	3.996837	0.0040			
D(SPI SDG 1(-2))	0.662054	0.396755	1.668675	0.1337			

D(SPI SDG 1(-3))	0.564569	0.274482	2.056856	0.0737
CointEq(-1)*	_	0.364680	-3.481050	0.0083
R-squared	0.693752	Mean	dependent	0.012667
Adjusted R-squared	0.523614	S.D. dep	endent var	0.133912
S.E. of regression	0.092427	Akaike ii	nfo criterion	-1.635614
Sum squared resid	0.076885	Schwarz	criterion	-1.352394
Log likelihood	18.26711	Hannan	-Quinn	-1.638631
F-statistic	4.077585	Durbin-V	Watson stat	2.405124
Prob(F-statistic)	0.032725			
<u>* p-value incompatib</u>	le with t-B	<u>ounds distr</u>	ribution.	
F-Bounds Test		Null Hypotl	hesis: No lev	vels relationship
Test Statistic	Value	Signif.	I(O)	I(1)
Test Statistic F-statistic	Value 5.385648	Signif. 10%	I(0) 5.59	I(1) 6.26
Test Statistic F-statistic k	Value 5.385648 1	Signif. 10% 5%	I(0) 5.59 6.56	I(1) 6.26 7.3
<u>Test Statistic</u> F-statistic k	Value 5.385648 1	Signif. 10% 5% 2.5%	I(0) 5.59 6.56 7.46	I(1) 6.26 7.3 8.27
<u>Test Statistic</u> F-statistic k	Value 5.385648 1	Signif. 10% 5% 2.5% 1%	I(0) 5.59 6.56 7.46 8.74	I(1) 6.26 7.3 8.27 9.63
Test Statistic F-statistic k t-Bounds Test	Value 5.385648 1	Signif. 10% 5% 2.5% 1% Null Hypot!	I(0) 5.59 6.56 7.46 8.74 hesis: No lev	I(1) 6.26 7.3 8.27 9.63 vels relationship
Test Statistic F-statistic k t-Bounds Test Test Statistic	Value 5.385648 1 Value	Signif. 10% 5% 2.5% 1% Null Hypot Signif.	I(0) 5.59 6.56 7.46 8.74 hesis: No lev I(0)	I(1) 6.26 7.3 8.27 9.63 vels relationship I(1)
Test Statistic F-statistic k t-Bounds Test Test Statistic t-statistic	Value 5.385648 1 Value	Signif. 10% 5% 2.5% 1% Null Hypot Signif. 10%	I(0) 5.59 6.56 7.46 8.74 nesis: No lev I(0) -3.13	I(1) 6.26 7.3 8.27 9.63 vels relationship I(1) -3.4
Test Statistic F-statistic k t-Bounds Test Test Statistic t-statistic	Value 5.385648 1 Value -	Signif. 10% 5% 2.5% 1% Null Hypot! Signif. 10% 5%	I(0) 5.59 6.56 7.46 8.74 hesis: No lev I(0) -3.13 -3.41	I(1) 6.26 7.3 8.27 9.63 vels relationship I(1) -3.4 -3.69
Test Statistic F-statistic k t-Bounds Test Test Statistic t-statistic	Value 5.385648 1 Value -	Signif. 10% 5% 2.5% 1% Null Hypot! Signif. 10% 5% 2.5%	I(0) 5.59 6.56 7.46 8.74 hesis: No lev I(0) -3.13 -3.41 -3.65	I(1) 6.26 7.3 8.27 9.63 vels relationship I(1) -3.4 -3.69 -3.96

In Table 6, with the observations in the conditional error correction version of the ARDL model, the study shows that the SDG 1 variable has significant magnitude for the coefficient (at the magnitude of -1.269468) of its long-run speed of adjustment parameter **CointEq(-1)** besides the presence of significant constant intercept value and the lagged coefficient values in the long-run error correction model. Here, it is interesting to report that in the error correction model, the short-term effects of the SDG 1 variable are observed from its first-year and third year lag variables as well. These results suggests that the SDG 1 variable suffers from short-run vicious cycle effects and maintaining the correction needs greater adjustment speed.

On stability of the model coefficients in Table 4 and Table 6, the study finds that the respective F-statistics are significant at one percent level and five percent level of significance respectively. The Durbin-Watson statistics in the models, which are mostly at magnitude of 2.40 confirm presence of acceptable level of stability in terms of the residual errors in the ARDL models. The same can also be observed from the insignificant Jarque-Bera (JB) Normality Test statistics for the residuals in the model as depicted in Figure 2. Nonetheless, the diagnostic test results with the CUSUM Test for the residuals in Figure 3 show that the model has less stability while the same with the CUSUM of the squared-residuals in Figure 4 show stability of the model. This apparent conflict, however, can be attributed to the sample size of the study. The CUSUM of the residuals could show stability if more explanatory variables have been incorporated as well. The said apprehension could be justified with the further residual diagnostic test results depicted in Appendix 2 and Appendix 4.

Figure 2: Jarque-Bera Normality Test of Residuals in ARDL Model Explaining SDG 1 with SDG 2

(Figure Source: Authors' Own Compilation in EViews 10)

Figure 3: CUSUM of Residuals of ADRL Model explaining SDG 1 with SDG 2

Figure 4: CUSUM of Squared Residuals of ADRL Model explaining SDG 1 with SDG 2

(Source: Authors' Own Compilation in EViews 10)

Now, the study empirically explores the ARDL model with the SDG 2 variable as explained variable and the SDG 1 variable as the explanatory variable in Table 7, Table 8 and Table 9. Interestingly, the unrestricted version of the ARDL model in Table 7 shows that only the constant intercept of the model is significant at five percent level of significance. Besides, the model has 69.7949 percent of explanatory power in the terms of its adjusted R-square value but with presence of lesser degree of stability for the model itself at its F-statistics being significant at six percent level of significance only. Furthermore, the Durbin-Watson statistics is at very high magnitude mostly of 2.95. The model results suggest for inability to explain the SDG 2 variable by the SDG 1 variable with the Indian data.

Table 7: ARDL (Unrestricted) Model Results Explaining SDG 2 with SDG 1

(Table Source: Authors' Own Compilation in EViews 10)

	ce. Autions	Own Compi		ews 10j
Dependent Variable:	SPI_SDG_2			
Method: ARDL				
Date: 11/15/24 Tin	ne: 16:30			
Sample (adjusted): 20	008 2022			
Included observation	s: 15 after a	djustments		
Maximum dependent	t lags: 4 (Au	tomatic selec	ction)	
Model selection meth	od: Akaike i	info criterion	(AIC)	
Dynamic regressors (4 lags, auto	matic): SPI_S	SDG_1	
Fixed regressors: C @	TREND			
Number of models ev	alulated: 20)		
Selected Model: ARD	<u>L(4, 3)</u>			
Variable	Coefficien	Std. Error	t-Statistic	Prob.*
SPI_SDG_2(-1)	0.590995	0.336741	1.755046	0.1396
SPI_SDG_2(-2)	-0.263204	0.356606	-0.738081	0.4936
SPI_SDG_2(-3)	-0.004847	0.288685	-0.016789	0.9873
SPI_SDG_2(-4)	-0.534680	0.265748	-2.011982	0.1004
SPI_SDG_1	0.076653	0.216995	0.353246	0.7383
SPI_SDG_1(-1)	0.000901	0.318407	0.002830	0.9979
<u>SPI_SDG_1(-2)</u>	-0.136831	0.365135	-0.374741	0.7232
<u>SPI_SDG_1(-3)</u>	-0.350355	0.337615	-1.037734	0.3470
С	1.355060	0.523385	2.589031	0.0489
@TREND	-0.009822	0.010230	-0.960066	0.3811
R-squared	0.892125	Mean dep	endent var	0.849133
Adjusted R-squared	0.697949	S.D. depe	<u>ndent var</u>	0.126393
S.E. of regression	0.069465	Akaike in	fo criterion	-2.261274
Sum squared resid	0.024127	Schwarz o	riterion	-1.789240
Log likelihood	26.95955	Hannan-Q	<u>)uinn</u>	-2.266302
F-statistic	4.594414	Durbin-W	atson stat	2.947337
Prob (F-statistic)	0.053917			
*Note n-values and a	ny subseque	ent tests do r	not account fo	or model selection

subsequent tests do

Our results in Table 8 with the conditional long-run model of the SDG 2 variable show that the long-run model has significant coefficients for the constant intercept term, its one-period lag variable as well as the first order differentiation variable at the second lag while the F-Bound test statistic is significant at ten percent level of significance suggesting that the existence of level relationship is very week but significant at higher level of significance, that is, ten percent level. Here also, the SDG 1 variable has been found making no influence on the SDG 2 variable. The variable SDG 2 purely derives its dynamic effects in relationship from its own long-run lagged effect and its short-term structural effect in terms of its significant constant intercept value.

Table 8: ARDL Model (Long Run Form and Bounds Test) ResultsExplaining SDG 2 with SDG 1

(Table Sou	rce: Autho	ors Own Co	mpliation i	n Eviews 10j
ARDL Long Run For	m and Boı	unds Test		
Dependent Variable:	D(SPI SD	G 2)		
Selected Model: ARD	DL (4, 3)			
Case 5: Unrestricted	l Constant	and Unres	tricted Trer	nd
Date: 11/15/24 Ti	me: 16:31			
Sample: 2004 2023				
Included observation	ns: 15			
<u>Conditional Error Co</u>	orrection F	Regression		
Variable	Coefficie	Std. Error	t-Statistic	Prob.
С	1.35506	0.523385	2.589031	0.0489
@TREND	-	0.010230	-0.960066	0.3811
SPI SDG 2(-1)*	-	0.350515	-3.457010	0.0181
SPI SDG 1(-1)	-	0.350572	-1.168469	0.2953
D(SPI SDG 2(-1))	0.802730	0.270411	2.968559	0.0312
D(SPI SDG 2(-2))	0.53952	0.245971	2.193457	0.0797
D(SPI SDG 2(-3))	0.534680	0.265748	2.011982	0.1004
D(SPI SDG 1)	0.076653	0.216995	0.353246	0.7383
D(SPI SDG 1(-1))	0.487186	0.367239	1.326619	0.2420
D(SPI SDG 1(-2))	0.350355	0.337615	1.037734	0.3470
<u>* p-value incompat</u>	<u>ible with t</u>	<u>-Bounds di</u>	<u>stribution.</u>	
Levels Equation				
Case 5: Unrestricted	<u> Constant</u>	and Unres	tricted Trer	nd
Variable	Coefficie	Std. Error	<u>t-Statistic</u>	Prob.
SPI_SDG_1	_	0.252206	-1.340390	0.2378
$EC = SPI_SDG_2 - (-$	0.3381*SF	PI_SDG_1)		
<u>F-Bounds Test</u>		<u>Null Hypot</u>	<u>hesis: No le</u>	vels relationship
<u>Test Statistic</u>	Value	Signif.	I(O)	I(1)
			Asymptoti	
F-statistic	6.26091	10%	5.59	6.26
k	1	5%	6.56	7.3
		2.5%	7.46	8.27
		1%	8.74	9.63
Actual Sample Size	15		Finite Sam	ple: n=30
		10%	6.01	6.78
		5%	7.36	8.265
		1%	10.605	11.65

t-Bounds Test	Null Hypothesis: No levels relationship			
Test Statistic	Value	Signif.	I(O)	I(1)
t-statistic	-	10%	-3.13	-3.4
		5%	-3.41	-3.69
		2.5%	-3.65	-3.96
		1%	-3.96	-4.26

Our results with the conditional error correction model of the SDG 2 variable as explained by the SDG 1 variable in Table 9 show that SDG 2 has significant long-run speed of adjustment (-1.211735) in the terms of its coefficient value for the parameter of *CointEq(-1)*. The model has significant values for its constant intercept parameter along with its three short-term lagged variables. Interestingly, there exists short-run long-run significant effect of the SDG 1 variable at its one period lag at mostly nine percent level of significance. The F-Bound F-statistics confirms the speed of adjustment (-1.211735) as well significant at 10 percent level of significance while the presence of level relationship is evident with the significance. But the model results' stability is very week and the is significant only at eleven percent level of significance in the terms of the F-statistics value. These all suggests for presence of week cointegration effects of the SDG 1 variable on the SDG 2 variable for India.

Table 9: ARDL Model (Error Correction Model) Results Explaining SDG 2with SDG 1

(Table Source: Authors' Own Compilation in EViews 10)								
ARDL Error Correction R	ARDL Error Correction Regression							
Dependent Variable: D(S	Dependent Variable: D(SPI SDG 2)							
Selected Model: ARDL(4, 3)								
Case 5: Unrestricted Constant and Unrestricted Trend								
Date: 11/15/24 Time:	16:32							
Sample: 2004 2023								
Included observations: 1	5							
ECM Regression								
Case 5: Unrestricted Cor	<u>istant and U</u>	nrestricted Tr	rend	-				
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	1.355060	0.362491	3.738192	0.0135				
@TREND	-0.009822	0.005624	-1.746481	0.1412				
D(SPI SDG 2(-1))	0.802730	0.243957	3.290461	0.0217				
D(SPI SDG 2(-2))	0.539526	0.224476	2.403487	0.0614				
D(SPI_SDG_2(-3))	0.534680	0.242553	2.204383	0.0787				
D(SPI_SDG_1)	0.076653	0.160818	0.476641	0.6537				
D(SPI SDG 1(-1))	0.487186	0.228568	2.131473	0.0862				
D(SPI SDG 1(-2))	0.350355	0.216801	1.616022	0.1670				
CointEq(-1)*	-1.211735	0.312596	-3.876364	0.0117				
R-squared	0.791855	Mean depe	ndent var	-0.006667				
Adjusted R-squared	0.514329	S.D. depen	dent var	0.090992				
S.E. of regression	0.063412	Akaike info criterion -2.394607						
Sum squared resid	0.024127	Schwarz criterion -1.969777						
Log likelihood	26.95955	Hannan-Q	uinn criter.	-2.399132				
F-statistic	2.853261	Durbin-Wa	itson stat	2.947337				

Prob(F-statistic)	0.109141								
* p-value incompatible	p-value incompatible with t-Bounds distribution.								
F-Bounds Test		Null Hypoth	esis: No level	<u>s relationship</u>					
Test Statistic	Value	Signif.	I(O)	I(1)					
F-statistic	6.260914	10%	5.59	6.26					
k	1	5%	6.56	7.3					
		2.5%	7.46	8.27					
		1%	8.74	9.63					
t-Bounds Test		Null Hypoth	esis: No level	s relationship					
Test Statistic	Value	Signif.	I(O)	I(1)					
t-statistic	-3.876364	10%	-3.13	-3.4					
		5%	-3.41	-3.69					
		2.5%	-3.65	-3.96					
		1%	-3.96	-4.26					

Figure 5: Jarque-Bera Normality Test of Residuals in ARDL Model Explaining SDG 2 with SDG 1

(Figure Source: Authors' Own Compilation in EViews 10)

Figure 6: CUSUM of Residuals of ADRL Model explaining SDG 2 with SDG 1

(Source: Authors' Own Compilation in EViews 10) Besides the above, the diagnostic test results suggests that there exists stability of the model. For example, the J-B Normality test statistics in Figure 5 shows insignificant parameter value while Figure 6 and Figure 7 find that the CUSUM of the residuals and the squared residuals of the model are within the limits of stability. The aforementioned findings could be justified with additional diagnostic test results for the ARDL regression residual autocorrelation test results (refer to Appendix 2 and Appendix 4) and residual heteroskedasticity test results (Appendix 4 and Appendix 5).

Figure 7: CUSUM of Squared Residuals of ADRL Model explaining SDG 2 with SDG 1

(Source: Authors' Own Compilation in EViews 10)

Finally, our results with the relationships of the one hundred sixty-six World Development Indicator variables (please see the list in the Appendix 5) related to the socio-economic status of the people in India as depicted in Table 10 show their respective magnitudes for the Pearson correlation coefficients of the SDG 1 and SDG 2 variables. The table shows that with the SDG 1 variable, there are eighty-eight instances of significant (ten percent level of significance) correlation coefficients for the WDI variables while with the SDG 2 variable, there are only seven instances of significant corelation coefficients of the WDI variables.

Out of the eighty-eight cases, SDG 1 is found negatively correlated with the WDI variables of access to clean fuels, access to electricity, adjusted national income, percentage of female populations in 25-29 ages, percentage of both male and female populations within the ages of 30-34, 55-59, and 60-64 but percentage of female populations within the ages of 75-79 but that of male populations within ages of 80-above. Besides, the SDG 1 variable is found to be negatively correlated expenses for subsidies and other transfers, the total female unemployment rate, both youth male and female unemployment rate, with children's vitamin A supplement coverage rate, and with wages of salaried workers. SDG 1 has less gender bias. Nonetheless, agricultural irrigated land, water stress level, life expectancy at birth, maternal life-time death risk, population age, unemployment rate, employment in industry, employment in services, and child immunization for DTP and measles have negative correlation with SDG 1. However, SDG 1 has significantly positive correlation with a batch of WDI variable such as percentage of adjusted gross

savings, age dependency ratio, employment in agriculture for all categories, percentage population employment above 15, female fertility rate, percentage of participation of labour force of age 15-24 and 15-64, percentage of female labour force, population employment rate of ages 15-24, population's adult male mortality rate, life expectancy of male at birth, total life expectancy, anaemia with pregnant women and children, government subsidies and transfers, unemployment of the youth male and female, maternal death and life-time risk, suicide death rates, poor status of people's nourishment, female employment in agriculture, male employment in services, wage and salaries of female employment, hazardous or vulnerable employment of the female etc. A long depiction of the correlation of WDI with SDG 1 is avoided to save space. Interested readers may study Table 10 at convenience. These suggest that there exist a long network of influence and industry bias those influence "No Hunger" while the direction and extent of magnitudes might be different.

Out of the seven cases of the WDI variables as correlated with the SDG 2 variable, three cases are observed respectively with the variable of percentage of "people with basic handwashing facilities including soap and water" in the total population, in the rural population, and in the urban population. Another instance with the number of people involved in "Net migration", besides the other three cases with the unemployment rate viz., unemployment rate for the youth, for female, and for total population. That is, WDI variables perform as strong proxy for exploring poverty eradication goals but little for eradicating hunger.

Table 10: Correlation Coefficients of World Development Indicators(WDI) with SDG 1 and SDG 2

	WDI Data Source: World Bank's World Development Indicator Database						
S	SPI Data Source: World Bank's Statistical Performance Indicators Database						
S1.	WDI Variables	SDG 1	Sig.	SDG 2	Sig.		
No			Level		Level		
	"Access to clean fuels and						
	technologies for cooking (% of	-	0.265	0.2009	0.4096		
1	population)"	0.2093					
	"Access to clean fuels and						
	technologies for cooking, rural (% of	0.2110	0.3838	0.2194	0.3668		
2	rural population)"	0.2119					
	"Access to clean fuels and						
	technologies for cooking, urban (% of	0 4 1 4 1	0.078	0.1458	0.5513		
3	urban population)"	0.7171					
	"Access to electricity (% of population)"	-	0.0758	0.1776	0.4669		
4		0.4168					

(Correlation Coefficient Source: Authors' Own Compilation in EViews 10) WDI Data Source: World Bank's World Development Indicator Database

-	"Access to electricity, rural (% of rural	-	0.0883	0.1803	0.4602
5	population)	0.4016			
e	Access to electricity, urban (% of	-	0.0533	0.1889	0.4386
0	(A directed wat wational income (annual)	0.4499			
7	Adjusted net national income (annual	0.2249	0.3695	-	0.9563
1	% growth)			0.0139	
0	Adjusted net national income per	0.2022	0.421	0	0.9999
0	"A diversed not notional income non				
0	Adjusted liet national income per	-	0.0058	0.1577	0.532
9	"Adjusted not servings, evoluting	0.0225			
	Adjusted het savings, excluding	0.0054	0.0241	-	0.966
10	CNU"	0.2954	0.2341	0.0428	0.800
10	GNI)				
	Aujusicu lici saviligs, iliciuullig	0 0522	0 2105	-	0.0006
11	GNI)"	0.2000	0.3103	0.0228	0.9200
**	"Adjusted savings: gross savings (% of			_	
12	GNI)"	0.433	0.0727	0.0616	0.8083
14	"Age dependency ratio (% of working-			-	
13	age population)"	0.401	0.0889	0 1443	0.5557
	"Age dependency ratio, old (% of	_		012110	
14	working-age population)"	0.2725	0.259	0.2528	0.2964
	"Age dependency ratio, young (% of			-	
15	working-age population)"	0.3843	0.1043	0.1635	0.5037
	"Agricultural irrigated land (% of total	-			
16	agricultural land)"	0.4224	0.0808	0.2215	0.377
		0.0700		-	0.0701
17	"Agricultural land (% of land area)"	0.3782	0.1217	0.2746	0.2701
	"Crop production index (2014-2016 =	_	0.1701	0.1000	0.001
18	100)"	0.3267	0.1721	0.1066	0.6641
	"Employment in agriculture (% of total	0 5004	0.0070	0.071	0.7706
19	employment) (modeled ILO estimate)"	0.5904	0.0078	-0.071	0.7726
	"Employment in agriculture, female (%				
	of female employment) (modeled ILO	0.6819	0.0013	-	0.8979
20	estimate)"			0.0316	
	"Employment in agriculture, male (%				
	of male employment) (modeled ILO	0.549	0.0149	-	0.6949
21	estimate)"			0.0903	
	"Employment in industry (% of total	-	0.046	-	0 8064
2"2	employment) (modeled ILO estimate)"	0.4629	0.040	0.0603	0.0004

	"Employment in industry, female (% of				
	female employment) (modeled ILO	-	0.0266	-	0.2014
23	estimate)"	0.307 +		0.3008	
	"Employment in industry, male (% of			_	
	male employment) (modeled ILO	0.4235	0.0708	0.0011	0.9966
24	estimate)"	0.1200		0.0011	
	"Employment in services (% of total	-	0.0037	0 2101	0.388
25	employment) (modeled ILO estimate)"	0.6314		0.2101	0.000
	"Employment in services, female (% of	-			
	female employment) (modeled ILO	0.5976	0.0069	0.199	0.4141
26	estimate)"				
	"Employment in services, male (% of			0.0067	0.0000
07	male employment) (modeled ILO	-0.636	0.0034	0.2367	0.3293
27	estimate)"				
00	Employment to population ratio, 15+,	0.6067	0.0059	0.1212	0.6212
28	"Employment to population ratio 15				
29	male (%) (modeled II () estimate)"	0.4422	0.058	-	0.3013
29	"Employment to population ratio 15+			0.2303	
30	total (%) (modeled ILO estimate)"	0.5794	0.0093	0.0942	0.7012
	"Employment to population ratio, ages			0.0912	
	15-24, female (%) (modeled ILO	0.4722	0.0412	-	0.6296
31	estimate)"			0.1183	
	"Employment to population ratio, ages				
	15-24, male (%) (modeled ILO	0.5187	0.0229	-	0.7305
32	estimate)"			0.0840	
	"Employment to population ratio, ages				
	15-24, total (%) (modeled ILO	0.5042	0.0277	0 0064	0.6945
33	estimate)"			0.0904	
	"Fertility rate, total (births per woman)	0.4096	0.0816	-	0.5374
34				0.1509	0.001
	"Immunization, DPT (% of children	-	0.0323	-	0.9443
35	ages 12-23 months)"	0.4922		0.0172	
	"Immunization, measles (% of children	-	0.0272	0.0786	0.749
36	ages 12-23 months)	0.5056			
	"Labor force participation rate for ages	0.417	0.0757	-	0 6000
27	15-24, temale (%) (modeled ILO	0.417	0.0757	0.1254	0.6089
37	estimate)				
	Labor force participation rate for ages	0 4040	0.0700	-	0 6052
20	15-24, male (%) (modeled iLO	0.4243	0.0702	0.0995	0.0853
30	csumatej				

	"Labor force participation rate for ages	0.4214	0.0723	-	0.6556
39	estimate)"	0.1211	0.0120	0.1094	0.0000
	"Labor force participation rate, female				
	(% of female population ages 15-64)	0.5526	0.0141	0.1032	0.6741
40	(modeled ILO estimate)"				
-	"Labor force participation rate, male				
	(% of male population ages 15-64)	0.4016	0.0883	-	0.3176
41	(modeled ILO estimate)"			0.2725	
	"Labor force participation rate, total			_	
	(% of total population ages 15-64)	0.5287	0.02	0.0849	0.7297
42	(modeled ILO estimate)"			0.0015	
	"Labor force, female (% of total labor	0.4975	0.0302	0.2398	0.3228
43	force)"				
	"Labor force, total	-	0.1478	0.1659	0.4972
44	"The standard free the standard free standar	0.3451			
	"Level of water stress: freshwater	-	0.0110	0.0054	0 0000
45	available freshwater resources	0.5945	0.0118	0.0234	0.9229
73	"Life expectancy at birth female				
46	(vears)	-0.752	0.0002	0.0898	0.7148
		-			
47	"Life expectancy at birth, male (years)"	0.7798	0.0001	0.0938	0.7024
	%T : C	-	0.0001	0.0016	0.7000
48	"Life expectancy at birth, total (years)"	0.7692	0.0001	0.0916	0.7093
	"Lifetime risk of maternal death (0/)"	0 7165	0.0012	-	0.6840
49	Lifetime fisk of maternal death (76)	0.7105	0.0012	0.1062	0.0049
	"Lifetime risk of maternal death (1 in:	-	0 0014	0 1245	0.634
50	rate varies by country)"	0.7096	0.0011	0.1210	0.001
	"Mortality caused by road traffic injury	0.5031	0.047	-	0.392
51	(per 100,000 population)"			0.2297	
	"Mortality from CVD, cancer, diabetes			_	
50	or CRD between exact ages 30 and 70	0.4544	0.077	0.1518	0.5746
52	(%)"				
	Mortality from CVD, cancer, diabetes	-	0 2216	-	0.4615
52	of CRD between exact ages 30 and 70, female $\binom{0}{2}$	0.2596	0.3310	0.1983	0.4015
55	"Mortality from CVD concer dishetes				
	or CRD between exact ares 30 and 70	0 5485	0 0278	-	0 7608
54	male (%)"		5.5215	0.0827	0.1000
	"Mortality rate, adult, female (per				
55	1,000 female adults)"	0.6609	0.0021	0.0538	0.8268
	· · · · · · · · · · · · · · · · · · ·			L	

56	"Mortality rate, adult, male (per 1,000 male adults)"	0.8799	0	- 0.0795	0.7462
57	"Mortality rate, infant (per 1,000 live births)"	0.4004	0.0894	- 0.1508	0.5377
58	"Mortality rate, infant, female (per 1,000 live births)"	0.3964	0.0929	- 0.1511	0.5369
59	"Mortality rate, infant, male (per 1,000 live births)"	0.4044	0.086	- 0.1461	0.5505
60	"Mortality rate, neonatal (per 1,000 live births)"	0.3693	0.1197	- 0.1598	0.5133
61	"Mortality rate, under-5 (per 1,000 live births)"	0.4156	0.0768	- 0.1447	0.5546
62	"Mortality rate, under-5, female (per 1,000 live births)"	0.4154	0.0769	- 0.1449	0.5538
63	"Mortality rate, under-5, male (per 1,000 live births)"	0.4151	0.0772	- 0.1432	0.5586
64	"Net migration	- 0.0931	0.7047	- 0.5342	0.0185
65	"Newborns protected against tetanus (%)"	- 0.2091	0.3902	0.1673	0.4936
66	"Number of deaths ages 10-14 years	0.3718	0.117	- 0.1712	0.4835
67	"Number of deaths ages 15-19 years	0.37	0.1189	- 0.1527	0.5326
68	"Number of deaths ages 20-24 years	0.3667	0.1225	- 0.1482	0.5449
69	"Number of deaths ages 5-9 years	0.4199	0.0735	- 0.1341	0.5842
70	"Number of infant deaths	0.4115	0.08	- 0.1597	0.5137
71	"Number of maternal deaths	0.7446	0.0006	- 0.1029	0.6944
72	"Number of neonatal deaths	0.3905	0.0983	- 0.1667	0.4951
73	"People practicing open defecation (% of population)"	0.3715	0.1173	- 0.1638	0.5029
74	"People practicing open defecation, rural (% of rural population)"	0.3651	0.1243	- 0.1656	0.4979
75	"People practicing open defecation, urban (% of urban population)"	0.3673	0.1218	- 0.1647	0.5005
76	"People using at least basic drinking water services (% of population)"	- 0.3738	0.1149	0.1628	0.5054

	"People using at least basic drinking				
	water services, rural (% of rural	0 3664	0.1228	0.165	0.4998
77	population)"	0.300+			
	"People using at least basic drinking	_			
	water services, urban (% of urban	0 3673	0.1219	0.1647	0.5005
78	population)"	0.0070			
	"People using at least basic sanitation	-	0 1 1 8 7	0 1647	0 5005
79	services (% of population)"	0.3702	0.1107	0.1011	0.0000
	"People using at least basic sanitation	-	0.1203	0.1653	0.4988
80	services, rural (% of rural population)"	0.3687	0.1200	0.1000	011900
	"People using at least basic sanitation	_			
	services, urban (% of urban	0.3546	0.1363	0.1687	0.49
81	population)"				
	"People using safely managed drinking	-		0.1.00.4	
	water services, rural (% of rural	0.3522	0.1392	0.1694	0.4881
82	population)"				
	"People using safely managed	-	0.1159	0.1627	0.5056
83	sanitation services (% of population)	0.3729			
	"People using safely managed	-	0 1 1 0 0	0.165	0 4000
01	samulation)"	0.3701	0.1100	0.105	0.4998
04	"Deeple using sofely menaged				
	sopilation services urban (% of urban	-	0 1544	0 1651	0 4003
85	population)"	0.3399	0.1344	0.1031	0.7993
	"People with basic handwashing				
	facilities including soap and water (%	0.0613	0.8423	0.649	0.0164
86	of population)"	0.0010	010120		
	"People with basic handwashing				
	facilities including soap and water,	0.0729	0.813	0.644	0.0175
87	rural (% of rural population)"				
	"People with basic handwashing				
	facilities including soap and water,	0.0729	0.813	0.644	0.0175
88	urban (% of urban population)"				
	"Population ages 00-04, female (% of	0 2070	0.0016	-	0.4805
89	female population)"	0.3919	0.0910	0.1689	0.4095
	"Population ages 00-04, male (% of	0 3924	0.0966	-	0 4734
90	male population)"	0.0944	0.0900	0.1751	0.1707
	"Population ages 0-14 (% of total	0.3674	0 1218	-	0 4773
91	population)"	0.0071	0.1410	0.1736	0.1110
	"Population ages 0-14, female (% of	0.3712	0.1176	-	0.48
92	female population)"	0.0112	0.1170	0.1725	0.10

93	"Population ages 0-14, male (% of male population)"	0.3638	0.1257	- 0.1745	0.4748
04	"Population ages 05-09, female (% of	0.3563	0.1343	-	0.5578
94	female population)"			0.1435	
05	"Population ages 05-09, male (% of	0.3494	0.1426	-	0.5605
95	"Population ages 10, 14, female (% of			0.1425	
96	female population)"	0.3387	0.1561	0.2173	0.3716
	"Population ages 10-14, male (% of	0.0001	0.1550	-	0.000
97	male population)"	0.3231	0.1773	0.2181	0.3698
	"Population ages 15-19, female (% of	0.2065	0.0010	-	0 5629
98	female population)"	0.3005	0.2019	0.1414	0.5038
	"Population ages 15-19, male (% of	0 2477	0.3066	-	0 403
99	male population)"	0.2111	0.0000	0.2037	0.100
	"Population ages 15-64 (% of total	-	0.0976	0.1479	0.5457
100	population)"	0.3913			
101	"Population ages 15-64, female (% of	-	0.0911	0.1464	0.5498
101	"Deputation area 15.64 male (% of	0.3984			
102	ropulation ages 15-04, male (% of	-	0.1036	0.1492	0.5421
102	"Population ages 20-24 female (% of	0.30+9		_	
103	female population)"	0.3058	0.203	0.1185	0.6289
	"Population ages 20-24, male (% of	0.0500	0 0055	0.000 -	0.0070
104	male population)"	0.2583	0.2857	0.0285	0.9079
	"Population ages 25-29, female (% of	-	0 0227	-	0.6410
105	female population)"	0.4912	0.0327	0.1143	0.0412
	"Population ages 25-29, male (% of	-0.386	0 1026	-	0 8781
106	male population)"	0.000	011020	0.0377	0.0101
	"Population ages 30-34, female (% of	-	0.0628	0.1985	0.4152
107	female population)"	0.4349			
109	"Population ages 30-34, male (% of	-	0.0649	0.1814	0.4573
108	"Population ages 35-30 female (% of	0.4318			
109	female population)"	0.2504	0.3012	0.1838	0.4514
	"Population ages 35-39, male (% of	-			
110	male population)"	0.2595	0.2834	0.1868	0.4437
	"Population ages 40-44, female (% of	-	0 1 0 0 1	0 1770	0.4665
111	female population)"	0.3197	0.1821	0.1778	0.4665
	"Population ages 40-44, male (% of	-	0.2354	0 1888	0 4380
112	male population)"	0.2859	0.2004	0.1000	0.4309
	"Population ages $45-49$, female (% of	-0.314	0.1905	0.1855	0.4472
113	female population)"	0.011	0.1900	0.1000	5.1114

	"Population ages 45-49, male (% of	-	0 2697	0 2037	0 403
114	male population)"	0.2667	0.2051	0.2001	0.100
	"Population ages 50-54, female (% of	-	0.1188	0.1709	0.4842
115	female population)"	0.3701			
	"Population ages 50-54, male (% of	-	0.1375	0.1872	0.4427
116	male population)"	0.3536			
110	"Population ages 55-59, female (% of	-	0.0775	0.1355	0.5803
117	female population)"	0.4147			
110	"Population ages 55-59, male (% of	-	0.0743	0.1572	0.5204
118	"male population)"	0.4188			
110	formale nonvilation)"	-	0.0873	0.0959	0.6961
119	"Population ages 60.64 male (% of	0.4020			
120	10 pulation ages 00-04, male (700	-	0.0803	0.0701	0.7754
140	"Population ages 65 and above 1% of	-			
121	total population)"	0.2925	0.2243	0.2349	0.3331
	"Population ages 65 and above female	-			
122	(% of female population)"	0.2925	0.2243	0.231	0.3413
	"Population ages 65 and above, male	_			0.00 -
123	(% of male population)"	0.2925	0.2244	0.2387	0.325
	"Population ages 65-69, female (% of	-	0.0265	0.0500	0 0020
124	female population)"	0.2853	0.2303	0.2592	0.2030
	"Population ages 65-69, male (% of	-	0 1707	0.2581	0.2861
125	male population)"	0.3278	0.1707	0.2001	0.2001
	"Population ages 70-74, female (% of	-	0.6219	0.2233	0.3581
126	female population)"	0.1209			
10-	"Population ages 70-74, male (% of	-0.101	0.6808	0.2272	0.3496
127	male population)"				
100	formula nonvilation)"	-	0.0802	0.1421	0.5618
140	"Population ages 75 70 male 10% of	0.7113			
129	male population)"	0.3436	0.1498	0.2007	0.4101
/	"Population ages 80 and above, female	-			
130	(% of female population)"	0.3806	0.1079	0.2212	0.3629
	"Population ages 80 and above, male	-	0.0770	0.0050	0.0007
131	(% of male population)"	0.4168	0.0759	0.2063	0.3967
	"Population growth (appual %)"	0 2000	0 4006	-	0 3006
132	i opulation grown (annual 70)	0.2009	0.7090	0.2462	0.0090
	"Population in the largest city (% of	-	0.1366	0.1673	0.4937
133	urban population)"	0.3544	0.1000		0.1507
	"Prevalence of anemia among children	0.8147	0.0001	-	0.8681
134	(% of children ages 6-59 months)"			0.0452	

	"Prevalence of anemia among non-				
	pregnant women (% of women ages	0.6759	0.0041	0.1236	0.6484
135	15-49)"				
	"Prevalence of anemia among	0 8207	0 0001	-	0 8574
136	pregnant women (%)"	0.0201	0.0001	0.0489	0.007
	"Prevalence of anemia among women				
	of reproductive age (% of women ages	0.6772	0.004	0.1047	0.6997
137	15-49)"				
	"Prevalence of HIV, total (% of	0.5613	0.0124	-	0 4396
138	population ages 15-49)"			0.1885	011030
	"Prevalence of undernourishment (%	0.6973	0.0013	-	0.5712
139	of population)"			0.1431	
	"Rural population (% of total	0.3358	0.1599	-	0.4662
140	population)"			0.1779	
	"Rural population growth (annual %)"	0.2225	0.36	-	0.3198
141				0.2412	
140	"Sex ratio at birth (male births per	0.1511	0.537	-0.244	0.3142
142	female births)"				
140	"Subsidies and other transfers (% of	-	0.0002	0.0993	0.7249
143	expense)"	0.8139			
144	"Suicide mortality rate (per 100,000	0.7612	0.0006	-	0.7637
144	population)			0.0617	
145	100 000 female population)"	0.7708	0.0005	- 0.1580	0.5585
143	"Suicide mortality rate, male (per			0.1362	
146	100 000 male population)"	0.7404	0.001	-	0.946
140	"Tuberculosis case detection rate (%	_		0.010+	
147	all forms)"	0.3619	0.1278	0.2976	0.2159
	"Tuberculosis treatment success rate	0.0017		_	
148	(% of new cases)"	0.3813	0.1185	0.0656	0.7959
_	"Unemployment, female (% of female	0.0000	0.00=:	_	0.4505
149	labor force) (modeled ILO estimate)"	0.0008	0.9974	0.1832	0.4527
	"Unemployment, female (% of female	-	0.0000	0.0010	0.1001
150	labor force) (national estimate)"	0.6465	0.0832	0.6213	0.1001
	"Unemployment, male (% of male labor	0.0005	0.0000	-	
151	force) (modeled ILO estimate)"	0.0005	0.9983	0.1401	0.5674
	"Unemployment, male (% of male labor	-	0.000	0 6751	0.0660
152	force) (national estimate)"	0.4289	0.289	0.0751	0.0002
	"Unemployment, total (% of total labor	0.001	0.0067	0 156	0 5036
153	force) (modeled ILO estimate)"	0.001	0.9907	-0.130	0.5230
	"Unemployment, total (% of total labor	-	0.0214	0 6705	0 0600
154	force) (national estimate)"	0.4776	0.2314	0.0703	0.0000

	"Unemployment, youth female (% of				
	female labor force ages 15-24)	-	0.0005	0.0959	0.6962
155	(modeled ILO estimate)"	0.1230			
	"Unemployment, youth female (% of				
	female labor force ages 15-24)	- 0.4685	0.2416	0.7423	0.035
156	(national estimate)"	0.4005			
	"Unemployment, youth male (% of				
	male labor force ages 15-24) (modeled	-	0.0004	0.0381	0.877
157	ILO estimate)"	0.1230			
	"Unemployment, youth total (% of	_			
	total labor force ages 15-24) (modeled	-	0.0004	0.0523	0.8316
158	ILO estimate)"	0.1210			
	"Vitamin A supplementation coverage	-	0.0572	-	0 7706
159	rate (% of children ages 6-59 months)"	0.5008	0.0012	0.0823	0.7700
	"Vulnerable employment, female (% of				
	female employment) (modeled ILO	0.6276	0.004	0 1607	0.5111
160	estimate)"			0.1007	
	"Vulnerable employment, male (% of			_	
	male employment) (modeled ILO	0.5033	0.0281	0 1311	0.5926
161	estimate)"			0.1011	
	"Vulnerable employment, total (% of			_	
	total employment) (modeled ILO	0.5528	0.0141	0 1386	0.5715
162	estimate)"			0.1000	
	"Wage and salaried workers, female (%	-			
	of female employment) (modeled ILO	0.6288	0.0039	0.1601	0.5127
163	estimate)"				
	"Wage and salaried workers, male (%				
	of male employment) (modeled ILO	-0.547	0.0154	0.12	0.6246
164	estimate)"				
	"Wage and salaried workers, total ($\%$	-			
	of total employment) (modeled ILO	0.5825	0.0089	0.1333	0.5866
165	estimate)"				
	"Women's share of population ages	-	0 1 1 4 1	0 1811	0 458
166	15+ living with HIV (%)"	0.3745	V. I I I I	0.1011	0.100

Conclusion

The present empirical study has explored if there is presence of possible cointegration or causality or interlinkages of the United Nations' SDG 1 "No Poverty" and SDG 2 "Zero Hunger" goals for India besides exploring their interlinkages with the use of the World Development Indicators (WDIs) for India. It has utilized established econometric methodologies for exploring the

interconnectedness or interrelations between the econometric variables viz., correlation analysis, causality analysis and congregation analysis as well. The study has revealed that with the sustainable performance indicator (SPI) data of the World Bank, there exists little causality or interlinkage between "No Poverty" i.e., SDG 1 and "Zero Hunger" in the context of India. The results indicate towards the ingenious findings that the SDG variables are either insufficient to measure the true theoretical interrelations between the variables or the performance of India is an exception of the said theoretical relationship, if so, exist in reality. However, there is presence of long-run speed of adjustment which runs out of self-targeting motives for both the SDG variables rather than through the impetus from the other development variable. These refer to the empirical validity of the idea that there exist two vicious cycles, one in poverty and another in hunger yet active in the Indian economy. Nonetheless, the world development indicators largely appear to be and insufficient or ineffective in addressing the "Zero Hunger" as a sustainable development goal while the same are very much effective to address the goal for "No Poverty".

In addressing policy suggestion, the study offers the following two inputs:

- (i) It appears necessary to relook into the specific measures to address the targets for "Zero Hunger" by the administrative departments in policy making for public benefits.
- (ii) Timely census is a prerequisite to any planning of governments' development activity and pending census of Indian population creates obstruction in targeting fulfilment of sustainable development goals like "Zero Hunger".

References

Adeyeye, S. A. O., Ashaolu, T. J., Bolaji, O. T., Abegunde, T. A., & Omoyajowo, A. O. (2023). Africa and the Nexus of poverty, malnutrition and diseases. *Critical Reviews in Food Science and Nutrition*, *63*(5), 641-656. https://doi.org/10.1080/10408398.2021.1952160

FAO (Food and Agriculture Organization). (2015). *The state of food insecurity in the world 2015: Meeting the 2015 international hunger targets: Taking stock of uneven progress.* FAO. <u>http://www.fao.org/3/a-i4646e.pdf</u>

Rasheed, S. (2023). Interconnected Realities: Examining the Complex Relationship between Poverty and Hunger. *Law Research Journal*, 1(1), 9-17. <u>https://lawresearchreview.com/index.php/Journal/article/view/2</u>

Rocco, L. A. (2017). Waste Not, Have Not: A Study on the Possible Symbiotic Relationship of Food Waste and Food Insecurity. <u>https://ideaexchange.uakron.edu/honors_research_projects/522/</u> Siddiqui, F., Salam, R. A., Lassi, Z. S., & Das, J. K. (2020). The intertwined relationship between malnutrition and poverty. *Frontiers in Public Health*, *8*, 453. <u>https://doi.org/10.3389/fpubh.2020.00453</u>

UNICEF. (2019). *The State of the World's Children 2019: Children, food and nutrition* – growing well in a changing world. UNICEF. <u>https://www.unicef.org/reports/state-of-worlds-children-2019</u>

UNICEF. (2021). The State of the World's Children 2021. On My Mind: Promoting, protecting and caring for children's mental health. UNICEF. https://www.unicef.org/reports/state-worlds-children-2021

UNICEF. (2023). The State of the World's Children 2023: For every child, immunization. UNICEF. <u>https://www.unicef.org/reports/state-worlds-children-2023</u>

World Bank. (2020). Poverty and shared prosperity 2020: Reversals of
fortune.WorldBankGroup.https://www.worldbank.org/en/publication/poverty-and-shared-
prosperity-2020Prosperity-2020Prosperity-2020

Appendix 1: World Development Indicator (WDI) Variables on the interlinkage of SDG 1 and SDG 2

(WDI Data Source: World Bank's World Development Indicator Database) (Database Link: https://databank.worldbank.org/source/worlddevelopment-indicators)

	Variables in World Development Indicators Used to Explain SDG 1 and						
	SDG 2 SPI Data						
1	"Access to clean fuels and technologies for cooking (% of population)"						
	"Access to clean fuels and technologies for cooking, rural (% of rural						
2	population)"						
	"Access to clean fuels and technologies for cooking, urban (% of urban						
3	population)"						
4	"Access to electricity (% of population)"						
5	"Access to electricity, rural (% of rural population)"						
6	"Access to electricity, urban (% of urban population)"						
7	"Adjusted net national income (annual % growth)"						
8	"Adjusted net national income per capita (annual % growth)"						
9	"Adjusted net national income per capita (constant 2015 US\$)"						
10	"Adjusted net savings, excluding particulate emission damage (% of GNI)"						
11	"Adjusted net savings, including particulate emission damage (% of GNI)"						

12	"Adjusted savings: gross savings (% of GNI)"					
13	"Age dependency ratio (% of working-age population)"					
14	"Age dependency ratio, old (% of working-age population)"					
15	"Age dependency ratio, young (% of working-age population)"					
16	"Agricultural irrigated land (% of total agricultural land)"					
17	"Agricultural land (% of land area)"					
18	"Crop production index (2014-2016 = 100)"					
19	"Employment in agriculture (% of total employment) (modeled ILO estimate)"					
	"Employment in agriculture, female (% of female employment) (modeled ILO					
20	estimate)"					
	"Employment in agriculture, male (% of male employment) (modeled ILO					
21	estimate)"					
22	"Employment in industry (% of total employment) (modeled ILO estimate)"					
	"Employment in industry, female (% of female employment) (modeled ILO					
23	estimate)"					
	"Employment in industry, male (% of male employment) (modeled ILO					
24	estimate)"					
25	"Employment in services (% of total employment) (modeled ILO estimate)"					
	"Employment in services, female (% of female employment) (modeled ILO					
26	estimate)"					
	"Employment in services, male (% of male employment) (modeled ILO					
27	estimate)"					
28	"Employment to population ratio, 15+, female (%) (modeled ILO estimate)"					
29	"Employment to population ratio, 15+, male (%) (modeled ILO estimate)"					
30	"Employment to population ratio, 15+, total (%) (modeled ILO estimate)"					
	"Employment to population ratio, ages 15-24, female (%) (modeled ILO					
31	estimate)"					
	"Employment to population ratio, ages 15-24, male (%) (modeled ILO					
32	estimate)"					
22	"Employment to population ratio, ages 15-24, total (%) (modeled ILO					
33	estimate)					
34	"Fertility rate, total (births per woman)					
35	Immunization, DPI (% of children ages 12-23 months)					
30	Immunization, measies (% of children ages 12-23 months)					
27	Labor force participation rate for ages 15-24, female (%) (modeled ILO					
37	"I abor force porticipation rate for area 15.04 male (%) (modeled II.O.					
38	estimate)"					
30	"Labor force participation rate for area 15.24 total (%) (modeled II.O					
30	Labor lorce participation rate ior ages 13-24, total (70) (modeled ILO estimate)"					
59	commany					
	"I abor force participation rate female (% of female population area 15.64)					
10	"Labor force participation rate, female (% of female population ages 15-64)					

	"Labor force participation rate, male (% of male population ages 15-64)						
41	(modeled ILO estimate)"						
	"Labor force participation rate, total (% of total population ages 15-64)						
42	(modeled ILO estimate)"						
43	"Labor force, female (% of total labor force)"						
44	"Labor force, total						
	"Level of water stress: freshwater withdrawal as a proportion of available						
45	freshwater resources						
46	"Life expectancy at birth, female (years)						
47	"Life expectancy at birth, male (years)"						
48	"Life expectancy at birth, total (years)"						
49	"Lifetime risk of maternal death (%)"						
50	"Lifetime risk of maternal death (1 in: rate varies by country)"						
51	"Mortality caused by road traffic injury (per 100,000 population)"						
	"Mortality from CVD, cancer, diabetes or CRD between exact ages 30 and 70						
52	(%)"						
	"Mortality from CVD, cancer, diabetes or CRD between exact ages 30 and 70,						
53	female (%)"						
	"Mortality from CVD, cancer, diabetes or CRD between exact ages 30 and 70,						
54	male (%)"						
55	"Mortality rate, adult, female (per 1,000 female adults)"						
56	"Mortality rate, adult, male (per 1,000 male adults)"						
57	"Mortality rate, infant (per 1,000 live births)"						
58	"Mortality rate, infant, female (per 1,000 live births)"						
59	"Mortality rate, infant, male (per 1,000 live births)"						
60	"Mortality rate, neonatal (per 1,000 live births)"						
61	"Mortality rate, under-5 (per 1,000 live births)"						
62	"Mortality rate, under-5, female (per 1,000 live births)"						
63	"Mortality rate, under-5, male (per 1,000 live births)"						
64	"Net migration						
65	"Newborns protected against tetanus (%)"						
66	"Number of deaths ages 10-14 years						
67	"Number of deaths ages 15-19 years						
68	"Number of deaths ages 20-24 years						
69	"Number of deaths ages 5-9 years						
70	"Number of infant deaths						
71	"Number of maternal deaths						
72	"Number of neonatal deaths						
73	"People practicing open defecation (% of population)"						
74	"People practicing open defecation, rural (% of rural population)"						
75	"People practicing open defecation, urban (% of urban population)"						

76	"People using at least basic drinking water services (% of population)"					
	"People using at least basic drinking water services, rural (% of rural					
77	population)"					
	"People using at least basic drinking water services, urban (% of urban					
78	population)"					
79	"People using at least basic sanitation services (% of population)"					
80	"People using at least basic sanitation services, rural (% of rural population)"					
	"People using at least basic sanitation services, urban (% of urban					
81	population)"					
	"People using safely managed drinking water services, rural (% of rural					
82	population)"					
83	"People using safely managed sanitation services (% of population)"					
	"People using safely managed sanitation services, rural (% of rural					
84	population)"					
	"People using safely managed sanitation services, urban (% of urban					
85	population)"					
	"People with basic handwashing facilities including soap and water (% of					
86	population)"					
	"People with basic handwashing facilities including soap and water, rural (%					
87	of rural population)"					
	"People with basic handwashing facilities including soap and water, urban ($\%$					
88	of urban population)"					
89	"Population ages 00-04, female (% of female population)"					
90	"Population ages 00-04, male (% of male population)"					
91	"Population ages 0-14 (% of total population)"					
92	"Population ages 0-14, female (% of female population)"					
93	"Population ages 0-14, male (% of male population)"					
94	"Population ages 05-09, female (% of female population)"					
95	"Population ages 05-09, male (% of male population)"					
96	"Population ages 10-14, female (% of female population)"					
97	"Population ages 10-14, male (% of male population)"					
98	"Population ages 15-19, female (% of female population)"					
99	"Population ages 15-19, male (% of male population)"					
100	"Population ages 15-64 (% of total population)"					
101	"Population ages 15-64, female (% of female population)"					
102	"Population ages 15-64, male (% of male population)"					
103	"Population ages 20-24, female (% of female population)"					
104	"Population ages 20-24, male (% of male population)"					
105	"Population ages 25-29, female (% of female population)"					
106	"Population ages 25-29, male (% of male population)"					
107	"Population ages 30-34, female (% of female population)"					
108	"Population ages 30-34, male (% of male population)"					

109	"Population ages 35-39, female (% of female population)"
110	"Population ages 35-39, male (% of male population)"
111	"Population ages 40-44, female (% of female population)"
112	"Population ages 40-44, male (% of male population)"
113	"Population ages 45-49, female (% of female population)"
114	"Population ages 45-49, male (% of male population)"
115	"Population ages 50-54, female (% of female population)"
116	"Population ages 50-54, male (% of male population)"
117	"Population ages 55-59, female (% of female population)"
118	"Population ages 55-59, male (% of male population)"
119	"Population ages 60-64, female (% of female population)"
120	"Population ages 60-64, male (% of male population)"
121	"Population ages 65 and above (% of total population)"
122	"Population ages 65 and above, female (% of female population)"
123	"Population ages 65 and above, male (% of male population)"
124	"Population ages 65-69, female (% of female population)"
125	"Population ages 65-69, male (% of male population)"
126	"Population ages 70-74, female (% of female population)"
127	"Population ages 70-74, male (% of male population)"
128	"Population ages 75-79, female (% of female population)"
129	"Population ages 75-79, male (% of male population)"
130	"Population ages 80 and above, female (% of female population)"
131	"Population ages 80 and above, male (% of male population)"
132	"Population growth (annual %)"
133	"Population in the largest city (% of urban population)"
134	"Prevalence of anemia among children (% of children ages 6-59 months)"
135	"Prevalence of anemia among non-pregnant women (% of women ages 15-49)"
136	"Prevalence of anemia among pregnant women (%)"
	"Prevalence of anemia among women of reproductive age (% of women ages
137	15-49)"
138	"Prevalence of HIV, total (% of population ages 15-49)"
139	"Prevalence of undernourishment (% of population)"
140	"Rural population (% of total population)"
141	"Rural population growth (annual %)"
142	"Sex ratio at birth (male births per female births)"
143	"Subsidies and other transfers (% of expense)"
144	"Suicide mortality rate (per 100,000 population)"
145	"Suicide mortality rate, female (per 100,000 female population)"
146	"Suicide mortality rate, male (per 100,000 male population)"
147	"Tuberculosis case detection rate (%, all forms)"
148	"Tuberculosis treatment success rate (% of new cases)"

149	"Unemployment, female (% of female labor force) (modeled ILO estimate)"				
150	"Unemployment, female (% of female labor force) (national estimate)"				
151	"Unemployment, male (% of male labor force) (modeled ILO estimate)"				
152	"Unemployment, male (% of male labor force) (national estimate)"				
153	"Unemployment, total (% of total labor force) (modeled ILO estimate)"				
154	"Unemployment, total (% of total labor force) (national estimate)"				
	"Unemployment, youth female (% of female labor force ages 15-24) (modeled				
155	ILO estimate)"				
	"Unemployment, youth female (% of female labor force ages 15-24) (national				
156	estimate)"				
	"Unemployment, youth male (% of male labor force ages 15-24) (modeled ILO				
157	estimate)"				
	"Unemployment, youth total (% of total labor force ages 15-24) (modeled ILO				
158	estimate)"				
159	"Vitamin A supplementation coverage rate (% of children ages 6-59 months)"				
160	"Vulnerable employment, female (% of female employment) (modeled ILO				
161	"Vulnerable employment, male (% of male employment) (modeled ILO				
162	"Vulnerable employment, total (% of total employment) (modeled ILO				
163	"Wage and salaried workers, female (% of female employment) (modeled ILO				
164	"Wage and salaried workers, male (% of male employment) (modeled ILO				
165	"Wage and salaried workers, total (% of total employment) (modeled ILO				
166	"Women's share of population ages 15+ living with HIV (%)"				

Appendix 2: B-P-G Serial Correlation LM Test of ARDL Model explaining SDG 1 with SDG 2

F-statistic	5.371995	Prob. F(2,6)		0.0460		
Obs*R-squared	9.624937	Prob. Ch	Prob. Chi-Square(2)			
Null Hypothesis: The	re is no seria	al correlatior	n of any orde:	r up to p		
Alternative Hypothe	sis: There is	serial corre	elation of any	y order up		
Test Equation:						
Dependent Variable: R	ESID					
Method: ARDL						
Date: 11/23/24 Time	e: 07:00					
Sample: 2008 2022						
Included observations:	15					
Pre-sample missing value lagged residuals set to zero.						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
SPI SDG 1(-1)	0.400603	0.410542	0.975789	0.3669		
SPI SDG 1(-2)	-0.011874	0.649228	-0.018289	0.9860		
SPI_SDG_1(-3)	-0.032171	0.516743	-0.062257	0.9524		
SPI SDG 1(-4)	0.224190	0.224823	0.997183	0.3572		
SPI SDG 2	0.353509	0.197329	1.791468	0.1234		
С	-0.748646	0.401606	-1.864129	0.1116		
@TREND	0.009738	0.009526	1.022290	0.3461		
RESID(-1) -1.083190 0.491377 -2.204398 0.0697						
RESID(-2)	RESID(-2) -1.015678 0.421405 -2.410220 0.052					
R-squared	0.641662	Mean dependent var -1.82				
Adjusted R-squared	0.163879	S.D. dependent var 0.074107				

S.E. of regression	0.067763	Akaike info criterion	-2.261894
Sum squared resid	0.027551	Schwarz criterion	-1.837064
Log likelihood	25.96421	Hannan-Quinn criter.	-2.266420
F-statistic	1.342999	Durbin-Watson stat	2.100481
Prob(F-statistic)	0.369817	Decision: Null Hypothesi	s rejected

Appendix 3: B-P-G Heteroskedasticity Test of ARDL Model explaining SDG 1 with SDG 2

(Source: Authors' Own Compilation in EViews 10)

Heteroskedasticity Test: Breusch-Pagan-Godfrey					
F-statistic	1.358334	Prob. F(6,8)		0.3351	
Obs*R-squared	7.569661	Prob. Chi-Se	guare(6)	0.2714	
Scaled explained SS	1.457670	Prob. Chi-Se	guare(6)	0.9623	
Null Hypothesis: There	is no Hetero	skedasticity o	of the residual	S	
Alternative Hypothesis: There is Heteroskedasticity of the residuals					
Test Equation:					
Dependent Variable: RE	SID^2				
Method: Least Squares					
Date: 11/23/24 Time:	07:06				
Sample: 2008 2022					
Included observations: 1	.5				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	-0.027776	0.023939	-1.160283	0.2794	
SPI SDG 1(-1)	-0.023041	0.016882	-1.364827	0.2095	
SPI SDG 1(-2)	0.038029	0.027515	1.382150	0.2043	
SPI SDG 1(-3)	-0.018169	0.025871	-0.702301	0.5024	
SPI_SDG_1(-4)	0.021202	0.018129	1.169510	0.2759	
SPI_SDG_2	0.014960	0.013553	1.103808	0.3018	
@TREND	0.000864	0.000726	1.190758	0.2679	
R-squared	-squared 0.504644 Mean dependent var		0.005126		
Adjusted R-squared	0.133127	S.D. dependent var		0.006174	
S.E. of regression	0.005748	Akaike info criterion		-7.175196	
Sum squared resid	0.000264	Schwarz criterion -6.844		-6.844772	
Log likelihood	60.81397	Hannan-Ouinn criter7.178		-7.178715	
F -statistic	1.358334	Durbin-Watson stat 2.98		2.981862	
Prob(F-statistic)	Prob(F-statistic) 0.335083 Decision: Null Hypothesis accepted a				

Appendix 4: B-P-G Serial Correlation LM Test of ARDL Model explaining SDG 2 with SDG 1

F-statistic	1.883661	Prob. F(2,3)	0.2952				
Obs*R-squared	8.350397	Prob. Chi-Square(2)	0.0154				
Null Hypothesis: The	ere is no ser	ial correlation of any ord	er up to p				
Alternative Hypothe	Alternative Hypothesis: There is serial correlation of any order up to p						
Test Equation:							
Dependent Variable: I	Dependent Variable: RESID						
Method: ARDL							
Date: 11/23/24 Tim	e: 07:23						
Sample: 2008 2022							

Included observations	Included observations: 15					
Presample missing value lagged residuals set to zero.						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
SPI SDG 2(-1)	0.494302	0.413162	1.196386	0.3175		
SPI SDG 2(-2)	-0.386691	0.443389	-0.872127	0.4473		
SPI SDG 2(-3)	-0.011338	0.282471	-0.040138	0.9705		
SPI SDG 2(-4)	0.204146	0.252760	0.807667	0.4784		
SPI SDG 1	-0.014134	0.196417	-0.071959	0.9472		
SPI SDG 1(-1)	-0.013872	0.280930	-0.049379	0.9637		
SPI SDG 1(-2)	-0.053176	0.315196	-0.168707	0.8768		
SPI SDG 1(-3)	0.038807	0.294461	0.131791	0.9035		
С	-0.189770	0.461869	-0.410873	0.7088		
@TREND	-0.003515	0.008981	-0.391399	0.7216		
RESID(-1)	-1.163340	0.603261	-1.928420	0.1494		
RESID(-2)	-0.235501	0.583819	-0.403380	0.7137		
R-squared	0.556693	Mean de	pendent var	-1.79E-16		
Adjusted R-squared	-1.068765	S.D. dependent var		0.041513		
S.E. of regression	0.059709	Akaike info criterion		-2.808100		
Sum squared resid	0.010696	Schwarz criterion		-2.241660		
Log likelihood	33.06075	Hannan-O	Quinn criter.	-2.814134		
F-statistic	0.342484	Durbin-Watson stat		2.495989		
Prob(F-statistic) 0.918307 Decision: Null Hypothesis accepted at (

Appendix 5: B-P-G Heteroskedasticity Test of ARDL Model explaining SDG 1 with SDG 2

Heteroskedasticity Test: Breusch-Pagan-Godfrey						
F-statistic	0.777484	Prob. F(9,5)		0.6507		
Obs*R-squared	8.748624	Prob. Ch	0.4608			
Scaled explained SS	1.325773	Prob. Ch	i-Square(9)	0.9982		
<u>Null Hypothesis: There</u>	<u>e is no Hetero</u>	oskedasticity	of the residua	uls		
Alternative Hypothesis: There is Heteroskedasticity of the residuals						
Test Equation:						
<u>Dependent Variable: RE</u>	SID^2					
<u>Method: Least Squares</u>						
<u> Date: 11/23/24 Time:</u>	07:24					
Sample: 2008 2022						
Included observations:	15			-		
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	-0.036436	0.022380	-1.628025	0.1644		
SPI SDG 2(-1)	0.010966	0.014399	0.761547	0.4807		
SPI SDG 2(-2)	0.005873	0.015249	0.385163	0.7160		
SPI SDG 2(-3)	-0.010873	0.012344	-0.880798	0.4187		
SPI SDG 2(-4)	0.022283	0.011364	1.960873	0.1072		
SPI SDG 1	0.001563	0.009279	0.168446	0.8728		
SPI SDG 1(-1)	1.62E-05	0.013615	0.001190	0.9991		
SPI SDG 1(-2)	0.000525	0.015613	0.033604	0.9745		
SPI SDG 1(-3)	0.017059	0.014437	1.181638	0.2905		
(@TREND	0.000319	0.000437	0.729411	0.4985		
R-squared	R-squared 0.583242 Mean dependent var		0.001608			
Adjusted R-squared	-0.166924	S.D. dependent var 0.002750				

S.E. of regression	0.002970	Akaike info criterion	-8.565535
Sum squared resid	4.41E-05	Schwarz criterion	-8.093502
Log likelihood	74.24151	Hannan-Quinn criter.	-8.570563
F-statistic	0.777484	Durbin-Watson stat	2.981943
Prob(F-statistic)	0.650731	Decision: Null Hypothesis	accepted at