Ricci and conformal Ricci solitons on trans-Sasakian space forms with semisymmetric metric connection

Sibsankar Panda* and Kalyan Halder

Department of Mathematics, Sidho-Kanho-Birsha University, Purulia - 723104, West Bengal, India Received: 16.02.2022; accepted: 15.05.2022; published online: 30.06.2022

The aim of this paper is to study the Ricci solitons and conformal Ricci solitons in trans-Sasakian space form with semi-symmetric metric connection.
Key words: Semi-symmetric; trans-Sasakian space form; Ricci solitons; Conformal Ricci solitons

1. Introduction

In 1982 Hamilton [8] introduced the concept of Ricci flow and proved its existence. The Ricci flow equation is given by

$$
\begin{equation*}
\frac{\partial g}{\partial t}=-2 S \tag{1}
\end{equation*}
$$

on a compact Riemannian manifold M with Riemannian metric g, where S is the Ricci tensor. A self-similar solution to the Ricci flow (1) is called a Ricci soliton which moves under the Ricci flow simply by diffeomorphisms of the initial metric, that is, they are stationary points of the Ricci flow in space of metrics on M. A Ricci soliton is a generalization of an Einstein metric. The Ricci soliton equation is given by

$$
\begin{equation*}
\mathcal{L}_{X} g+2 S=2 \lambda g \tag{2}
\end{equation*}
$$

where \mathcal{L} is the Lie derivative, S is the Ricci tensor, g is Riemannian metric, X is a vector field and λ is a scalar. The Ricci soliton is said to be shrinking, steady, and expanding according as λ is positive, zero and negetive respectively.
Fischer during 2003-2004 developed the concept of conformal Ricci flow [6] which is a variation of the classical Ricci flow equation that modifies the unit volume constraint of that equation to a scalar curvature constraint. The conformal Ricci flow on M is defined by [7]

$$
\begin{equation*}
\frac{\partial g}{\partial t}+2\left(S+\frac{g}{n}\right)=-p g \tag{3}
\end{equation*}
$$

where $R(g)=-1$ and p is a non-dynamical scalar field(time dependent scalar field), $R(g)$ is the scalar curvature of the n-dimessional manifold M.

[^0]In 2015, N. Basu and A. Bhattacharyya [1] introduced the notion of conformal Ricci soliton and the equation is as follows

$$
\begin{equation*}
\mathcal{L}_{X} g+2 S=\left[2 \lambda-\left(p+\frac{2}{n}\right)\right] g \tag{4}
\end{equation*}
$$

where λ is a scalar.
Several authors [15, 9, 12, 13] have studied Ricci solitons on different types of trans-Sasakian manifolds. Conformal Ricci solitons on trans-Sasakian manifolds are also studied by various authors [4, 10, 2]. But they have studied on trans-Sasakian manifold with Levi-Civita connection. In this article, we have studied Ricci solitons and conformal Ricci solitons on trans-Sasakian manifold with semi-symmetric metric connection and on transSasakian space form with semi-symmetric metric connection.

2. Preliminaries

Definition 2.1. Let $(M, \varphi, \xi, \eta, g)$ be a $(2 n+1)$ dimensional contact metric manifold, where φ is a (1, 1)-tensor field, ξ a unit vector field and η a smooth 1-form dual to ξ with respect to the Riemannian metric g satisfying

$$
\left.\begin{array}{l}
\varphi^{2}=-I+\eta \otimes \xi \\
\varphi(\xi)=0 \\
\eta \circ \varphi=0 \tag{5}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{array}\right\}
$$

$X, Y \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M. If there are smooth functions α, β on an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ satisfying

$$
\begin{align*}
(\nabla \varphi)(X, Y) & =\alpha[g(X, Y) \xi-\eta(Y) X] \\
& +\beta[g(\varphi X, Y) \xi-\eta(Y) \varphi X] \tag{6}
\end{align*}
$$

having the property
$(\nabla \varphi)(X, Y)=\nabla_{X} \varphi Y-\varphi\left(\nabla_{X} Y\right), \quad X, Y \in \mathfrak{X}(M)$,
∇ is the Levi-Civita connection with respect to the metric g. Then the manifold is said to be transSasakian manifold of type (α, β) and denoted by
$(M, \varphi, \xi, \eta, g, \alpha, \beta)[11]$. From equations (5) and (6), it follows that

$$
\begin{equation*}
\nabla_{X} \xi=-\alpha \varphi(X)+\beta(X-\eta(X) \xi), X \in \mathfrak{X}(M) \tag{7}
\end{equation*}
$$

The following relations hold in a trans-Sasakian manifold

$$
\begin{align*}
& \nabla_{X} \xi=-\alpha \varphi X+\beta[X-\eta(X) \xi] \tag{8}\\
& \left(\nabla_{X} \eta\right) Y=-\alpha g(\varphi X, Y)+\beta g(\varphi X, \varphi Y) \tag{9}\\
& R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y] \\
& +2 \alpha \beta[\eta(Y) \varphi X-\eta(X) \varphi Y]+(Y \alpha) \varphi X \\
& -(X \alpha) \varphi Y+(Y \beta) \varphi^{2} X-(X \beta) \varphi^{2} Y, \tag{10}\\
& R(\xi, Y) X=\left(\alpha^{2}-\beta^{2}\right)[g(X, Y) \xi-\eta(X) Y] \\
& +2 \alpha \beta[g(\varphi X, Y) \xi-\eta(X) \varphi Y]+(X \alpha) \varphi Y \\
& +g(\varphi X, Y)(\operatorname{grad} \alpha)+X \beta[Y-\eta(Y) \xi] \\
& -g(\varphi X, \varphi Y)(\operatorname{grad} \beta), \tag{11}\\
& R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}-\xi \beta\right)[\eta(X) \xi-X] \tag{12}\\
& S(X, \xi)=\left[2 n\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right] \eta(X) \\
& \quad-(2 n-1) X \beta-(\varphi X) \alpha, \tag{13}\\
& Q \xi=\left[2 n\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right] \xi-(2 n-1) \operatorname{grad} \beta \\
& \quad+\varphi(\operatorname{grad} \alpha), \tag{14}\\
& S(X, Y)=g(Q X, Y) \text { and } 2 \alpha \beta+\xi \alpha=0 . \tag{15}
\end{align*}
$$

Definition 2.2. A trans-Sasakian manifold M is said to be an η-Einstein manifold [5] if Ricci tensor satisfies the relation

$$
\begin{equation*}
S(X, Y)=\lambda g(X, Y)+\mu \eta(X) \eta(Y) \tag{16}
\end{equation*}
$$

where λ, μ are smooth functions.

3. Semi-symmetric metric connection and trans-Sasakian space Form

3.1 Semi-symmetric metric connection

Let M be an $m=(2 n+1)$-dimensional Riemannian manifold of class C^{∞} endowed with the Riemannian metric g and ∇ be the Levi-Civita connection on $\left(M^{m}, g\right)$. A linear connection $\widetilde{\nabla}$ defined on $\left(M^{m}, g\right)$ is said to be semi-symmetric [3], if its torsion tensor T is of the forms

$$
\begin{equation*}
T(X, Y)=\widetilde{\nabla}_{X} Y-\widetilde{\nabla}_{Y} X-[X, Y] \tag{17}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
T(X, Y)=\eta(Y) X-\eta(X) Y \tag{18}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}(M)$
where η is an 1 -form with associated vector field ξ defined by

$$
\begin{equation*}
\eta(X)=g(X, \xi) \tag{19}
\end{equation*}
$$

for all vector fields $X \in \mathfrak{X}(M)$.
A semi-symmetric connection $\widetilde{\nabla}$ is called a semisymmetric metric connection if it further satisfies

$$
\widetilde{\nabla} g=0
$$

A relation between the semi-symmetric metric connection $\widetilde{\nabla}$ and the Levi-Civita connection ∇ on $\left(M^{m}, g\right)$ has been obtained by Yano [12] which is given by

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-g(X, Y) \xi \tag{20}
\end{equation*}
$$

Further, a relation between the curvature tensor R of the Levi-Civita connection ∇ and the curvature tensor \widetilde{R} of the semi-symmetric metric connection $\widetilde{\nabla}$ is given by

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & R(X, Y) Z+\alpha(X, Z) Y-\alpha(Y, Z) X \\
& +g(X, Z) A Y-g(Y, Z) A X, \tag{21}
\end{align*}
$$

for all vector fields X, Y, Z on M, where α is the (0,2)-tensor field and A is a tensor field of type $(1,1)$ defined by

$$
\begin{align*}
\alpha(X, Y)=\left(\nabla_{X} \eta\right) Y & -\eta(X) \eta(Y) \\
& +\frac{1}{2} \eta(\xi) g(X, Y) \tag{22}
\end{align*}
$$

and $\quad \alpha(X, Y)=g(A X, Y)$.
The curvature tensor \widetilde{R} with respect to $\widetilde{\nabla}$ is given by

$$
\begin{align*}
& \widetilde{R}(X, Y) Z=\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} Z-\widetilde{\nabla}_{Y} \widetilde{\nabla}_{X} Z \\
&-\widetilde{\nabla}_{[X, Y]} Z . \tag{24}
\end{align*}
$$

Using (20), we get

$$
\begin{align*}
& \widetilde{R}(X, Y) Z=R(X, Y) Z+\alpha[g(\varphi Y, Z) X \\
& -g(\varphi X, Z) Y+g(Y, Z) \varphi X-g(X, Z) \varphi Y] \\
& +(2 \beta+1)[g(X, Z) Y-g(Y, Z) X] \\
& -(+1)[\eta(Z) \eta(X) Y-\eta(Z) \eta(Y) X \\
& +\eta(Y) g(X, Z) \xi-\eta(X) g(Y, Z) \xi] \tag{25}
\end{align*}
$$

Ricci and conformal Ricci solitons on trans-Sasakian space forms with semi-symmetric...

Lemma 3.1. From equation (25), we have

$$
\begin{aligned}
& \widetilde{R}(X, Y) \xi=\left(\alpha^{2}-\beta^{2}-\beta\right)[\eta(Y) X-\eta(X) Y] \\
& +(2 \alpha \beta+\alpha)[\eta(Y) \varphi X-\eta(X) \varphi Y]+(Y \alpha) \varphi X \\
& -(X \alpha) \varphi Y+(Y \beta) \varphi^{2} X-(X \beta) \varphi^{2} Y
\end{aligned}
$$

Lemma 3.2.

$$
\begin{aligned}
\widetilde{R}(\xi, Y) \xi=\left(\alpha^{2}-\beta^{2}-\beta-\xi \beta\right) & {[\eta(Y) \xi-Y] } \\
& -(2 \alpha \beta+\alpha+\xi \alpha) \varphi Y .
\end{aligned}
$$

Remark 3.3. If α, β are constants, then

$$
\begin{align*}
\widetilde{R}(\xi, Y) \xi=\left(\alpha^{2}-\beta^{2}-\beta\right) & {[\eta(Y) \xi-Y] } \\
& -(2 \alpha \beta+\alpha) \varphi Y \tag{26}
\end{align*}
$$

The Ricci tensor \widetilde{S} with respect to $\widetilde{\nabla}$ is

$$
\begin{align*}
& \widetilde{S}(X, Y)=S(X, Y)+\alpha(2 n-1) g(\varphi X, Y) \\
& -\{(4 n-1) \beta+(2 n-1)\} g(X, Y) \\
& +(\beta+1) \eta(X) \eta(Y), \tag{27}
\end{align*}
$$

and scalar curvatur \widetilde{r} is

$$
\begin{equation*}
\tilde{r}=r-8 n^{2} \beta-2 n(2 n-1) . \tag{28}
\end{equation*}
$$

where $S(X, Y), r$ are Ricci tensor and scalar curvature with respect to $\widetilde{\nabla}$ respectively.

Lemma 3.4.

$$
\begin{gather*}
\widetilde{S}(X, \xi)=S(X, \xi)+\alpha(2 n-1) g(\varphi X, \xi) \\
-\{(4 n-1) \beta+(2 n-1)\} g(X, \xi) \\
+(\beta+1) \eta(X) \eta(\xi) \\
= \\
\therefore \quad S(X, \xi)-2 n(2 \beta+1) \eta(X) \\
\therefore \quad \widetilde{S}(X, \xi)=\left[2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)-\xi\right] \eta(X) \tag{29}\\
\\
\quad-(2 n-1) X \beta-(\varphi X) \alpha .
\end{gather*}
$$

Remark 3.5. If α, β are constants, then

$$
\begin{equation*}
\widetilde{S}(X, \xi)=2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right) \eta(X) . \tag{30}
\end{equation*}
$$

Lemma 3.6. $\widetilde{Q} \xi=\left[2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)-\xi \beta\right] \xi-$ $(2 n-1) \operatorname{grad} \beta+\varphi(\operatorname{grad} \alpha)$.

Remark 3.7. If α, β are constants, then

$$
\begin{equation*}
\widetilde{Q} \xi=2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right) \xi \tag{31}
\end{equation*}
$$

3.2 Trans-Sasakian space form

A trans-Sasakian manifold $M^{2 n+1}$ of constant φ sectional curvature c is called a trans-Sasakian space form [14] denoted by $M^{2 n+1}(c)$ and its curvature tensor is given by

$$
\begin{aligned}
& R(X, Y) Z=\frac{\gamma(c+3)+\delta(c-3)}{4} \\
& +\frac{\gamma(c-1)+\delta(c+1)}{4}\{[\eta(X) Y-\eta(Y) X] \eta(Z) \\
& +[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \xi+g(\varphi Y, Z) \varphi X \\
& -g(\varphi X, Z) \varphi Y+2 g(X, \varphi Y) \varphi Z\}
\end{aligned}
$$

where γ and δ are smooth functions.
The Ricci tensor on trans-Sasakian space form defined by

$$
\begin{aligned}
& S(X, Y)=\frac{1}{2}[c(n+1)(\gamma+\delta)+(3 n-1)(\gamma-\delta)] \\
& \quad g(X, Y)-\frac{n+1}{2}[c(\gamma+\delta)-(\gamma-\delta)] \eta(X) \eta(Y)
\end{aligned}
$$

By (5), it becomes

$$
\begin{array}{r}
S(X, Y)=2 n g(X, Y)+\frac{n+1}{2}[c(\gamma+\delta)-(\gamma-\delta)] \\
g(\varphi X, \varphi Y) \tag{32}
\end{array}
$$

With the help of (25) and (27), the trans-Sasakian space form with semi-symmetric metric connection is

$$
\begin{align*}
& \widetilde{R}(X, Y) Z=\frac{\gamma(c+3)+\delta(c-3)}{4} \\
& \quad[g(Y, Z) X-g(X, Z) Y] \\
& +\frac{\gamma(c-1)+\delta(c+1)}{4}\{[\eta(X) Y-\eta(Y) X] \eta(Z) \\
& +[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \xi+g(\varphi Y, Z) \varphi X \\
& -g(\varphi X, Z) \varphi Y+2 g(X, \varphi Y) \varphi Z\}+\alpha[g(\varphi Y, Z) X \\
& \quad-g(\varphi X, Z) Y+g(Y, Z) \varphi X-g(X, Z) \varphi Y] \\
& +(2 \beta+1)[g(X, Z) Y-g(Y, Z) X] \\
& -(\beta+1) \eta(Z) \eta(X) Y-\eta(Z) \eta(Y) X \\
& +\eta(Y) g(X, Z) \xi-\eta(X) g(Y, Z) \xi] . \tag{33}
\end{align*}
$$

and the Ricci tensor is

$$
\begin{align*}
& \widetilde{S}(X, Y)=\frac{1}{2}[c(n+1)(\gamma+\delta) \\
& +(3 n-1)(\gamma-\delta)] g(X, Y) \\
& -\frac{n+1}{2}[c(\gamma+\delta)-(\gamma-\delta)] \eta(X) \eta(Y) \\
& +\alpha(2 n-1) g(\varphi X, Y)-\{(4 n-1) \beta \\
& +(2 n-1)\} g(X, Y)+(\beta+1) \eta(X) \eta(Y) \tag{34}
\end{align*}
$$

Using (5), it can be written as,
$\widetilde{S}(X, Y)=\frac{n+1}{2}[c(\gamma+\delta)-(\gamma-\delta)] g(\varphi X, \varphi Y)$

$$
\begin{align*}
& +\alpha(2 n-1) g(\varphi X, Y)+[1-(4 n-1) \beta] g(X, Y) \\
& +(\beta+1) \eta(X) \eta(Y) \tag{35}
\end{align*}
$$

Replacing Y by ξ in (35), we have,

$$
\begin{equation*}
\widetilde{S}(X, \xi)=2[1-(2 n-1) \beta] \eta(X) \tag{36}
\end{equation*}
$$

4. Ricci Solitons

Let V be pointwise collinear vector field with ξ i.e. $V=b \xi$, where b is a function on the trans-Sasakian manifold. Then $\left(\mathcal{L}_{V} g+2 \widetilde{S}+\right.$ $2 \lambda g)(X, Y)=0$, implies

$$
\begin{aligned}
g\left(\nabla_{X} b \xi, Y\right)+g\left(\nabla_{Y} b \xi, X\right) & +2 \widetilde{S}(X, Y) \\
& +2 \lambda g(X, Y)=0
\end{aligned}
$$

or, $\quad b g(-\alpha \varphi X+\beta(X-\eta(X) \xi), Y)+(X b) \eta(Y)$

$$
\begin{aligned}
& +b g(-\alpha \varphi Y+\beta(Y-\eta(Y) \xi), X) \\
& +(Y b) \eta(X)+2 \widetilde{S}(X, Y)+2 \lambda g(X, Y)=0
\end{aligned}
$$

which yields

$$
\begin{align*}
& 2 b \beta g(X, Y)-2 b \beta \eta(X) \eta(Y)+(X b) \eta(Y) \\
+ & (Y b) \eta(X)+2 \widetilde{S}(X, Y)+2 \lambda g(X, Y)=0 \tag{37}
\end{align*}
$$

Replacing Y by ξ in (37) it follows that

$$
\begin{aligned}
& 2 b \beta \eta(X)-2 b \beta \eta(X)+(X b)+(\xi b) \eta(X) \\
& +2 \widetilde{S}(X, \xi)+2 \lambda \eta(X)=0
\end{aligned}
$$

which gives by (29),

$$
\begin{align*}
& X b+\left\{\xi b+\left[4 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)-2 \xi \beta\right]\right. \\
& +2 \lambda\} \eta(X)-2(2 n-1) X \beta \\
& -2(\varphi X) \alpha=0 \tag{38}
\end{align*}
$$

Putting $X=\xi$, we have

$$
\begin{aligned}
& 2 \xi b+\left\{\left[4 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)-2 \xi \beta\right]+2 \lambda\right\} \\
& -2(2 n-1) \xi \beta=0
\end{aligned}
$$

If α, β are constants, then

$$
\xi b=-\left\{2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)+\lambda\right\} .
$$

Hence (38) becomes

$$
\begin{equation*}
X b=-\left\{2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)+\lambda\right\} \eta(X) \tag{39}
\end{equation*}
$$

or, $\quad d b=-\left\{2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)+\lambda\right\} \eta$.
Applying d on (39), we get $\left\{2 n\left(\alpha^{2}-\beta^{2}-2 \beta-\right.\right.$ $1)+\lambda\} d \eta=0$. Since $d \eta \neq 0$ we have

$$
\begin{equation*}
2 n\left(\alpha^{2}-\beta^{2}-2-1\right)+\lambda=0 \tag{40}
\end{equation*}
$$

Using (40) in (39) yields b is a constant.
Therefore from (37) it follows

$$
\widetilde{S}(X, Y)=-(b \beta+\lambda) g(X, Y)+b \beta \eta(X) \eta(Y)
$$

which implies that M is of constant scalar curvature provided α, β are constants. This leads to the following:
Theorem 4.1. If a trans-Sasakian manifold ($M, \varphi, \xi, \eta, g, \alpha, \beta)$ with semi-symmetric metric connection is a Ricci soliton and V is pointwise collinear vector field with ξ, then V is a constant multiple of ξ and g is of constant scalar curvature provided α, β are constants.
Corollary 4.2. If a trans-Sasakian manifold ($M, \varphi, \xi, \eta, g, \alpha, \beta)$ with semi-symmetric metric connection is a Ricci soliton and V is pointwise collinear vector field with ξ and V is a constant multiple of ξ, then the manifold is η-Einstein manifold provided α, β are constants.
The equation $\left(\mathcal{L}_{V} g+2 \widetilde{S}+2 \lambda g\right)(X, Y)=0$, implies

$$
\begin{aligned}
g\left(\nabla_{X} b \xi, Y\right)+g\left(\nabla_{Y} b \xi, X\right) & +2 \widetilde{S}(X, Y) \\
& +2 \lambda g(X, Y)=0
\end{aligned}
$$

or, $\quad b g(-\alpha \varphi X+\beta(X-\eta(X) \xi), Y)+(X b) \eta(Y)$

$$
\begin{aligned}
& +b g(-\alpha \varphi Y+\beta(Y-\eta(Y) \xi), X)+(Y b) \eta(X) \\
& +2 \widetilde{S}(X, Y)+2 \lambda g(X, Y)=0
\end{aligned}
$$

which yields

$$
\begin{align*}
& 2 b \beta g(X, Y)-2 b \beta \eta(X) \eta(Y)+(X b) \eta(Y) \\
& +(Y b) \eta(X)+2 \widetilde{S}(X, Y) \\
& +2 \lambda g(X, Y)=0 \tag{41}
\end{align*}
$$

Replacing Y by ξ it follows that

$$
\begin{aligned}
& 2 b \beta \eta(X)-2 b \beta \eta(X)+(X b)+(\xi b) \eta(X) \\
& +2 \widetilde{S}(X, \xi)+2 \lambda \eta(X)=0
\end{aligned}
$$

Using (35),

$$
\begin{equation*}
X b+[4\{1-(2 n-1) \beta\}+\xi b+2 \lambda] \eta(X)=0 \tag{42}
\end{equation*}
$$

Replacing X by ξ, we have

$$
\xi b=-2\{1-(2 n-1) \beta\}-\lambda
$$

Hence (42) becomes

$$
\begin{align*}
& X b=-[2\{1-(2 n-1)\}+\lambda] \eta(X) . \\
\text { or, } & d b=-[2\{1-(2 n-1) \beta\}+\lambda] \eta . \tag{43}
\end{align*}
$$

Applying d on (43), we get $[2\{1-(2 n-1) \beta\}+$ $\lambda] d \eta=0$. Since $d \eta \neq 0$ we have

$$
\begin{equation*}
2\{1-(2 n-1) \beta\}+\lambda=0 \tag{44}
\end{equation*}
$$

Using (44) in (43) yields b is a constant.
Therefore from (37) it follows

$$
\widetilde{S}(X, Y)=-(b+\lambda) g(X, Y)+b \eta(X) \eta(Y)
$$

Ricci and conformal Ricci solitons on trans-Sasakian space forms with semi-symmetric...

Theorem 4.3. If a tran-Sasakian space form $(M, \varphi, \xi, \eta, g, c, \alpha, \beta)$ with semi-symmetric metric connection is a Ricci soliton and V is pointwise collinear vector field with ξ, then V is a constant multiple of ξ.
Corollary 4.4. If a tran-Sasakian space form $(M, \varphi, \xi, \eta, g, c, \alpha, \beta)$ with semi-symmetric metric connection is a Ricci soliton and V is pointwise collinear vector field with ξ and V is a constant multiple of ξ, then it is η-Einstein provided_ is constant.

5. Conformal Ricci solitons

A conformal Ricci soliton equation on a Riemannian manifold M is defined by

$$
\begin{equation*}
\mathcal{L}_{V} g+2 S=\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g \tag{45}
\end{equation*}
$$

where V is a vector field.
Let V be pointwise colinear with ξ i.e. $V=b \xi$ where b is a function on the trans-Sasakian manifold. Then

$$
\left(\mathcal{L}_{b \xi} g+2 S-\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g\right)(X, Y)=0
$$

which implies

$$
\begin{align*}
& \left(\mathcal{L}_{b \xi} g\right)(X, Y)+2 S(X, Y) \\
& -\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g(X, Y)=0 \tag{46}
\end{align*}
$$

Repalcing S by \widetilde{S} in equation (46), we have

$$
\begin{aligned}
& \left(\mathcal{L}_{b \xi} g\right)(X, Y)+2 \widetilde{S}(X, Y) \\
& -\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g(X, Y)=0
\end{aligned}
$$

which implies

$$
\begin{aligned}
& g\left(\nabla_{X} b \xi, Y\right)+g\left(\nabla_{Y} b \xi, X\right)+2 \widetilde{S}(X, Y) \\
& -\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g(X, Y)=0
\end{aligned}
$$

or, $b g(-\alpha \varphi X+\beta(X-\eta(X) \xi), Y)+(X b) \eta(Y)$

$$
\begin{aligned}
& +b g(-\alpha \varphi Y+\beta(Y-\eta(Y) \xi), X) \\
& +(Y b) \eta(X)+2 \widetilde{S}(X, Y) \\
& -\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g(X, Y)=0
\end{aligned}
$$

which yields

$$
\begin{align*}
& 2 b \beta g(X, Y)-2 b \beta \eta(X) \eta(Y)+(X b) \eta(Y) \\
& +(Y b) \eta(X)+2 \widetilde{S}(X, Y) \\
& -\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g(X, Y)=0 \tag{47}
\end{align*}
$$

Replacing Y by ξ it follows that

$$
\begin{aligned}
& 2 b \beta \eta(X)-2 b \beta \eta(X)+(X b)+(\xi b) \eta(X) \\
& +2 \widetilde{S}(X, \xi)-\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] \eta(X)=0
\end{aligned}
$$

Using (29),

$$
\begin{align*}
& X b+\left\{\xi b+\left[4 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)-2 \xi \beta\right]\right. \\
& \left.-2 \lambda+\left(p+\frac{2}{3}\right)\right\} \eta(X)-2(2 n-1) X \beta \\
& -2(\varphi X) \alpha=0 \tag{48}
\end{align*}
$$

Put $X=\xi$, we have

$$
\begin{aligned}
& 2 \xi b+\left\{\left[4 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)-2 \xi \beta\right]-2 \lambda\right. \\
& \left.+\left(p+\frac{2}{3}\right)\right\}-2(2 n-1) \xi \beta=0
\end{aligned}
$$

If α, β are constants, then
$\xi b=-\left\{2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)-\lambda+\frac{1}{2}\left(p+\frac{2}{3}\right)\right\}$.
Hence (48) becomes

$$
\begin{aligned}
X b=\left\{\lambda-\frac{1}{2}\right. & \left(p+\frac{2}{3}\right) \\
& \left.-2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)\right\} \eta(X)
\end{aligned}
$$

or, $d b=\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)\right.$

$$
\begin{equation*}
\left.-2 n\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)\right\} \eta \tag{49}
\end{equation*}
$$

Applying d on (49), we get $\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)-2 n\right.$ $\left.\left(\alpha^{2}-\beta^{2}-2 \beta-1\right)\right\} d \eta=0$. Since $d \eta \neq 0$ we have

$$
\begin{align*}
&\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)-2 n\right.\left(\alpha^{2}-\beta^{2}\right. \\
&-2 \beta-1)\}=0 \tag{50}
\end{align*}
$$

Using (50) in (49) yields b is a constant. Therefore from (47) it follows

$$
\begin{aligned}
\widetilde{S}(X, Y)=\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)-\right. & b \beta\} g(X, Y) \\
& +b \beta \eta(X) \eta(Y)
\end{aligned}
$$

which implies that M is of constant scalar curvature provided α, β are constants. This leads to the following:
Theorem 5.1. If a trans-Sasakian manifold ($M, \varphi, \xi, \eta, g, \alpha, \beta$) with semi-symmetric metric connection is a conformal Ricci soliton and V is pointwise collinear vector field with ξ, then V is a
constant multiple of ξ and it is of constant scalar curvature provided α, β are constants.
Corollary 5.2. If a trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ with semi-symmetric metric connection is a Ricci soliton and V is pointwise collinear vector field with ξ and V is a constant multiple of ξ, then it is η-Einstein manifold provided α, β are constants.
The $\left(\mathcal{L}_{b \xi} g\right)(X, Y)+2 \widetilde{S}(X, Y)-\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g$ $(X, Y)=0$ implies

$$
\begin{aligned}
g\left(\nabla_{X} b \xi, Y\right)+ & g\left(\nabla_{Y} b \xi, X\right)+2 \widetilde{S}(X, Y) \\
& -\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g(X, Y)=0,
\end{aligned}
$$

or, $b g(-\alpha \varphi X+\beta(X-\eta(X) \xi), Y)+(X b) \eta(Y)$

$$
+b g(-\alpha \varphi Y+\beta(Y-\eta(Y) \xi), X)+(Y b) \eta(X)
$$

$$
+2 \widetilde{S}(X, Y)-\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g(X, Y)=0
$$

which yields

$$
\begin{align*}
& 2 b \beta g(X, Y)-2 b \beta \eta(X) \eta(Y)+(X b) \eta(Y) \\
& +(Y b) \eta(X)+2 \widetilde{S}(X, Y) \\
& -\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] g(X, Y)=0 . \tag{51}
\end{align*}
$$

Replacing Y by ξ it follows that

$$
\begin{aligned}
& 2 b \beta \eta(X)-2 b \eta(X)+(X b)+(\xi b) \eta(X) \\
& \quad+2 \widetilde{S}(X, \xi)-\left[2 \lambda-\left(p+\frac{2}{3}\right)\right] \eta(X)=0
\end{aligned}
$$

Using (35),

$$
\begin{align*}
X b+\{\xi b & +4[1-(2 n-1) \beta] \\
& \left.-2 \lambda+\left(p+\frac{2}{3}\right)\right\} \eta(X)=0 \tag{52}
\end{align*}
$$

Putting $X=\xi$, we have

$$
\begin{array}{r}
2 \xi b+\left\{4[1-(2 n-1) \beta]-2 \lambda+\left(p+\frac{2}{3}\right)\right\}=0 . \\
\text { or, } \xi b=-\left\{2[1-(2 n-1) \beta]-\lambda+\frac{1}{2}\left(p+\frac{2}{3}\right)\right\} .
\end{array}
$$

Hence (52) becomes

$$
\begin{aligned}
& X b=\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)\right. \\
&-2[1-(2 n-1) \beta]\} \eta(X)
\end{aligned}
$$

or, $d b=\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)\right.$

$$
\begin{equation*}
-2[1-(2 n-1) \beta]\} \eta \tag{53}
\end{equation*}
$$

Applying d on (53), we get $\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)\right.$ $-2[1-(2 n-1) \beta]\} d \eta=0$. Since $d \eta \neq 0$ we have

$$
\begin{equation*}
\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)-2[1-(2 n-1) \beta]\right\}=0 . \tag{54}
\end{equation*}
$$

Using (54) in (53) yields b is a constant.
Therefore from (51) it follows

$$
\begin{array}{r}
\widetilde{S}(X, Y)=\left\{\lambda-\frac{1}{2}\left(p+\frac{2}{3}\right)-b \beta\right\} g(X, Y) \\
+b \beta \eta(X) \eta(Y)
\end{array}
$$

which implies that M is of constant scalar curvature provided_ is constants. This leads to the following:
Theorem 5.3. If a trans-Sasakian space form $(M, \varphi, \xi, \eta, g, c, \alpha, \beta)$ with semi-symmetric metric connection is a confomal Ricci soliton and V is pointwise collinear vector field with ξ, then V is a constant multiple of ξ.
Corollary 5.4. If a trans-Sasakian space form $(M, \varphi, \xi, \eta, g, c, \alpha, \beta)$ with semi-symmetric metric connection is a conformal Ricci soliton and V is pointwise collinear vector field with ξ and V is a constant multiple of ξ, then it is η-Einstein manifold provided_ is constant.

References

[1] Arindam Bhattacharyya and Nirabhra Basu, Conformal Ricci soliton in Kenmotsu manifold, 4(1): 15-21, 2015.
[2] Arindam Bhattacharyya and Soumendu Roy, Conformal Ricci solitons on 3-dimensional transSasakian manifold, Jordan Journal of Mathematics and Statistics, 13(1): 89-109, 2020.
[3] Abhishek Singh and Shyam Kishor, On a SemiSymmetric Metric Connection in Generalized Sasakian Space Forms, Global Journal of Pure and Applied Mathematics, 13(9): 6407-6419, 2017.
[4] Arindam Bhattacharyya, Nirabhra Basu and Tamalika Dutta, Almost conformal Ricci solituons on 3-dimensional trans-Sasakian manifold, Hacettepe journal of mathematics and statistics, 45(5): 1379-1392, 2016.
[5] David E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, volume 203, 2002.
[6] Arthur E Fischer, An introduction to conformal Ricci flow, Classical and Quantum Gravity, 21(3): pages-S171, 2004.
[7] Soumendu Roy, Santu Dey, Arindam Bhattacharyya and Shyamal Kumar Hui, *-Conformal η-Ricci soliton on Sasakian manifold, AsianEuropean Journal of Mathematics, 15(2): 17 pages, 2022.

Ricci and conformal Ricci solitons on trans-Sasakian space forms with semi-symmetric...

[8] Richard S Hamilton and others, Three-manifolds with positive Ricci curvature, J. Differential geom, 17(2): 255-306, 1982.
[9] K Venu and others, η-Ricci solitons in transSasakian manifolds, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(2): 218-224, 2017.
[10] Mohd Danish Siddiqi, Conformal η-Ricci solitons in δ-Lorentzian Trans Sasakian manifolds, International Journal of Maps in Mathematics, 1(1): 15-34, 2018.
[11] J. A. Oubiña, New classes of almost contact metric structures, Publicationes Mathematicae Debrecen, 32: 187-193, 1985.
[12] Ganesh P Pokhariyal, Sunil Yadav and Sudhakar Kumar Chaubey, Ricci solitons on trans-Sasakian
manifolds, Differential Geometry-Dynamical Systems, 20: 138-158, 2018.
[13] Sampa Pahan, η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds, Cubo (Temuco), 22(1): 23-37, 2020.
[14] Sibsankar Panda, Arindam Bhattacharya and Kalyan Halder, Symmetries on Trans-Sasakian Space Forms, Journal of the Chungcheong Mathematical Society, 33(4): 375-385, 2020.
[15] Mine Turan, Uday Chand De and Ahmet Yildiz, Ricci solitons and gradient Ricci solitons in threedimensional trans-Sasakian manifolds, Filomat 26(2): 363-370, 2012.

[^0]: *Corresponding author Emails: shibu.panda@gmail.com, drkalyanhalder@gmail.com

