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Abstract 
In this work, a detailed investigation of photonic 
crystal fiber (PCF) with different mesh systems 
and degrees of freedom (DoF) is studied. The 
variation of numerical results is analysed using 
the finite element method (FEM). Fused silica 
as a cladding material was used to design the 
hollow core PCF and optimised for wavelength 
λ=1.55μm in the FEM analysis. Triangular mesh 
with growth rate (Gr) up to Gr =3.95 and 
maximum mesh element size (mL) ranging from 
mL=λ to mL=14λ is used in the FEM study. The 
study shows field intensity deviation as high as 
~100V/m and mode purity deviation up to 
0.002%. This study puts light on the importance 
of meshing density and its effect on the 
deviation of the numerical outcome.   
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1. Introduction 

The finite element method (FEM) is a well-known 
robust technique in the numerical study of 
different models, such as electromagnetic, 
mechanical, and structural models. The Finite 
Element Method (FEM) is a powerful numerical 
technique that has played a significant role in the 
advancement of engineering and applied sciences 
[1 ]. Furthermore, the integration of FEM with 
other computational techniques, such as 
optimisation algorithms and machine learning, 
has opened new horizons for the development of 
innovative solutions to complex engineering 
problems. Numerical simulation saves resources 
that otherwise could have been used in numerous 
experiments. Techniques such as finite difference 
approximations [1-3] and various weighted 
residual procedures [4] are used in different 
numerical studies. Coarse mesh settings will 
improve computational time but it will come at a 
cost of accuracy. So, there should be a balance 
between computational cost without 
compromising computational acceptable 
accuracy. Methods like FEM are handy to tackle 
problems and optimise the desired outcome 
before even testing in real life. The two kinds of 
meshing techniques used in filling the domain are 
triangular mesh [7] and quadrilateral mesh [8]. 
Solving FEM simulations requires meshing the 
model geometry. Among optical fibers, photonic 

crystal fiber (PCF) [9] has recently got much 
attention both for FEM-based study as well as 
possible candidates for advanced applications 
such as communication [10], sensing [11], and 
continuum generations [12], etc.  

In this paper, we focus on two-dimensional 
simulation using Photonic Crystal Fiber (PCF) to 
understand the dependence of mesh on simulation 
results. Modelling is done in 2D geometry. Triangular 
mesh is used to fill the geometry. Analysis of mesh 
dependency on factors such as confinement loss, 
dispersion loss, mode purity and multimode effect of 
PCF is studied. 
 
2. Theory and Design 
The finite element method (FEM) is a modern, 
versatile tool that can give close approximate 
solutions to real experimental values in several fields 
of research. In our study, a PCF model in two-
dimensional space is used as a reference model. The 
simulation is run for each wavelength λ. The mesh is 
prepared for the model with three important mesh 
parameters: Mesh growth (Gr), maximum mesh 
element size (mL) and minimum element size (ms). 
For each simulation and meshing of the model, these 
three parameters are needed to be set. The maximum 
and minimum possible element size of the mesh is 
limited by mL and ms. The model geometry is broken 
into a smaller domain called mesh domains formed 
by mesh elements, with a growth rate of mesh size Gr. 
Figure 1(a) shows the coarse mesh of sample 
geometry. Figure 1(b) shows the low-quality mesh 
responsible for the majority of deviation of results 
due to mesh. Figure 1(c) shows a representative image 
of the finer mesh. The mode analysis frequency is set 
to 193.1 THz. At the two media interfaces, when no 
surface current is present, the equation (1) and (2) is 
represented [13] as: 

𝑛2 × (𝐸1 − 𝐸2) = 0    

 (1) 

𝑛2 × (𝐻1 − 𝐻2) = 0    

 (2) 
 
Here, E and H are the electric and magnetic fields for 
the two mediums. In the 2-Dimensional study, the 
electric field varies with the out-of-plane wave number 
kz as 



 

Kamaruzzaman, Kuiri, Patra 

 

 
J.Sci.Enq., 2023, 3(1) 20 

𝐸(𝑥,𝑦,𝑧) = 𝐸̅(𝑥, 𝑦)𝑒𝑥𝑝(−𝑖𝑘𝑧𝑧)  

 (3) 
 
The wave equation (3) can be rearranged and written 
as the following[9]: 

(∇ − 𝑖𝑘𝑧𝑧) × [
1

μ𝑟
(∇ − 𝑖𝑘2𝑧) × 𝐸] − 𝑘0

2ε𝑟𝑒𝐸 = 0 

 (4) 
Where z is the out-of-the-plane (x-y plane) vector. 
 

 
FIGURE 1(A) LOW-DENSITY MESH NEAR 
CURVED DOMAIN (B) MAGNIFIED VIEW 

SHOWING LOW-QUALITY MESH (C) DENSE 
MESH 

 
The PCF design is shown in Figure 2.The inner core of 
radius r1. The ring’s inner and outer radii are r2 and r3, 
respectively. The final outer radius of the cladding is 
r4. The outer air hole is composed of a circular hole of 
area a1, and the inner ring is composed of modified 
rectangular holes of area a2.  

 
FIGURE 2 ARCHITECTURE OF PHOTONIC 

CRYSTAL FIBER FOR OPTIMISATION 
The values are tabulated in Table 1 in micrometres 
(μm) and area as (μm2). The material used in the 
study includes fused silica, SF2 doped silica and air. 

Table 1 Geometry parameters for the model 
 
Figure 2 shows two different types of mesh. We have 
designed the model using triangular mesh throughout 
the geometry domain of the PCF, as shown in Fig. 3(a). 
It contains 1012627 triangles, 940 edge elements, and 
132 vertices. Fig 3(b) shows Quadrilateral meshing of 
the same PCF geometry. It contains 896 
quadrilaterals, 902828 triangles, 1004 edge elements, 
132 vertices. The study is set up for a frequency of 193.1 
THz. All simulation is carried out using triangular 
mesh in this work. The outermost domain is set to a 
perfectly matched layer which is essentially used to 
handle reflected waves from the outer boundary. 
 

 

 
FIGURE 3 (A) PCF WITH TRIANGULAR MESH 

(B)PCF WITH QUADRILATERAL MESH 
 
 

3. Results and Discussion 
 

The numerical investigation is performed using the 
standard triangular mesh of the PCF geometry 
structure. The growth rate of the mesh, the maximum 
element size of the mesh, as well as the mode purity is 
analysed. Relative error calculation of mode purity is 
studied for different mesh growth rates.  
 
Mesh growth rate analysis 
The growth of adjacent mesh in filling up the model 
geometry is quantified by Mesh growth (Gr). 
Triangular mesh is used to fill up the domain for the 
FEM study. The field profile of a selected mode HE01 

Radius μm Area  
(air 

hole) 

μm2 

Material R.I 
r1 6.90 a1 23.42 Fused 

Silica 1.44 
r2 20.53 a2 18.4 SF2 

doped 1.81 
r3 28.38 

  

Air 1.00 
r4 37.83 
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is used as the reference model in the analysis. Figure 4 
shows the dependence of mesh growth on the field 
intensity while keeping all other parameters 
unchanged. Results show at a fixed mesh size, the 
mesh growth density plays a major role in simulation 
results. The growth rate Gr=1.1 gives a field intensity 
of ~ 192 V/m, whereas, for Gr=3.95, the maximum 
field intensity is ~ 450 V/m, much higher than Gr=1.1. 
This increase is mainly attributed to the resulting 
coarse mesh near the boundary region between two 
different refractive indexes and curved geometry.     

 
FIGURE 4 MESH GROWTH RATE VARIATION 

WITH THE FIELD MAGNITUDE THROUGH 
FIBER CROSS-SECTION PASSING THROUGH 

THE CENTRE 
 
Maximum Mesh size analysis 
We analysed the efficiency of the PCF for different 
sizes of mesh based on the field intensity studies. The 
maximum element size (mL) of the mesh in Fig. 4 is 
varied with the excited wavelength λ. The maximum 
element size is varied from mL= λ to mL= 14λ. Minimum 
element size ms and growth rate Gr are fixed at ms = 

λ/12 and Gr=1.3, respectively. Figure 5 shows the 
variation of intensity magnitude due to mL keeping all 
other parameters constant. The nature of the results is 
consistent. The data indicate that the magnitude of the 
maximum field intensity value (V/m) varies in the 
range of ~70 V/m in the studied model. Analysis 
shows the variation of peak intensity might deviate 
and should be taken care of while performing FEM-
based electromagnetic simulations.  

 
FIGURE 5 VARIATION OF FIELD INTENSITY 

DUE TO MAXIMUM MESH SIZE 
 

 
The maximum intensity at different mesh dimensions 
is shown in the plot. Results indicate that even for 
identical simulation settings, the maximum intensity 
amplitude deviates to a relatively high value by setting 
different mL. Thus, these factors must be considered 
when working with electromagnetic-based 
simulations using the FEM technique. 
 
Degree of freedom analysis 
The quality of supported modes can be quantitively 
studied using the mode purity of the supported 
modes. The mode purity Mp is calculated using the 
following relation 

Mp =
Ir1

Ic1
=

∬ |E⃗⃗ |
2
dxdyring

∬ |E⃗⃗ |
2
dxdycross-section 

   (5) 

Here Ir1 and Ic1 are the average mode field intensity in 
the PCF and the intensity of the whole area of the PCF, 
respectively, in the fiber. Ir1 is the region where most 
of the intensity of all the OAM modes is supposed to 
be confined, which is the ring region. The calculation 
helps us to understand the quality of supported 
modes. Table 2 tabulates the Gr, mode purity, and 
degree of freedom (DoF) values for the given 
numerical study.  

 
FIGURE 6 THE MODE PURITY WITH THE 

GROWTH RATE GR 
 

TABLE 2: DEGREE OF FREEDOM SOLVED 
WITH THE GIVEN GROWTH RATE  

 
 
 
 
 
 

Gr Mode Purity 
(HE01) 

Mode Purity 
(EH01) 

DoF 

1 0.999522716 0.999522688 653465 

1.05 0.999509404 0.999508533 189113 

1.1 0.999503807 0.999502733 141695 

1.15 0.999502912 0.999500652 119365 

1.2 0.999502091 0.99949919 107325 

1.25 0.999500727 0.999496905 101963 

1.3 0.999500851 0.999495313 96643 
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Error calculation due to mesh growth 
The mesh growth is one of the fundamental 
parameters used in any FEM-based simulation, which 
is used in FEM-based PCF numerical simulations, but 
the effect of different mesh growth on the result is not 
intensively studied in literature as per our survey. 
Here we present the error calculation of mode purity 
with different growth rates. All other parameters are 
unchanged in this study. The Gr rate is checked from 
Gr=1 to Gr=1.3. The mode purity Mp at minimum 
growth rate Gr=1 is ~0.99952 from Table. 2. Relative 
Error is calculated using the value of Mp at Gr=1 as a 
reference. 

𝑀𝑝 Error % =
𝑀𝑝 (𝐺𝑟=1)−𝑀𝑝 (𝐺𝑟=1.3)

𝑀𝑝 (𝐺𝑟=1)
   (6) 

 
 
 

 
FIGURE 7 MODE PURITY ERROR 

CALCULATION TO GROWTH RATE FOR HE01 
 

 
FIGURE 8 MODE PURITY ERROR 

CALCULATION TO COMPUTATIONAL TIME 
FOR HE01 

 
Figure 7 shows the deviation in mode purity value at 
different growth rates. The total deviation is ~0.002% 
for our model and study settings. Figure 8 shows the 
relative error with computational time. The result 
accuracy depends on the mesh density as well as 
computational cost. A balance between optimum 
mesh density and computational resources are needed 
to be balanced for stable numerical simulation results. 
Coarse mesh will led to results at a cheaper 
computational cost but the results will come at an 
error bias, from our study Mode purity error came out 

to be +/- 0.002% with respect to the finest mesh used 
in the simulation. Even though this value looks small, 
in practicality, a PCF needs to be of finite long length 
where small changes through a distance can result in 
deviated results than theoretical prediction. Hence it 
is essential to consider the factors in the numerical 
designing process. 
Conclusion 
This study presents an intensive study of mesh 
dependence on PCF simulation based on FEM. The 
nature of the FEM study is consistent, but there is a 
significant deviation of peak intensity value at 
different mesh densities. The investigation shows 
deviation as high as ~100V/m for both Gr and mL 
variation studies. The mesh element is varied from 
mL= λ to mL= 14λ for excited wavelength λ and growth 
rate Gr=1.1 to Gr=3.95. Mode purity of the supported 
mode of the PCF is calculated and yields a maximum 
relative error of ~ 0.002%. The study demonstrates 
the need for mesh optimisation, especially in 
developing sensors and sensitive optical instruments, 
as a small relative error may lead to a larger peak 
deviation. The study demonstrates the need to focus 
on mesh optimisation in FEM studies, particularly for 
photonic devices.  
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