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Abstract

The aim of the current article is to study and
investigate p-almost Ricci solitons on hyperbolic
Kenmotsu manifolds. In this manner, we prove the
second order Ricci tensor field S is parallel along
the timelike vector field ¢ if and only if {(u) = 0.
It is also shown that the soliton is shrinking and
the potential vector field V is point-wise collinear
with constant multiple of the timelike vector
field {. Further, we obtain some results for u-
almost Ricci solitons on hyperbolic Kenmotsu
manifolds admitting Codazzi type of Ricci tensor
and cyclic parallel Ricci tensor.

Keywords: almost Ricci solitons, u-almost Ricci
solitons, hyperbolic Kenmotsu manifold, Codazzi
type Ricci tensor, cyclic parallel Ricci tensor.

1. Introduction

A lot of progress has been made recently in the
study of self-similar solutions of the Ricci flow.

In 1982, Hamilton [10] revealed the concept of
Ricci flow to search out a canonical metric on a
smooth manifold. A Ricci soliton is nothing but a
natural generalized case of an Einstein metric and
is defined on a Riemannian manifold (M, g)
[5].

The Ricci flow is an evolution equation for metrics
on a Riemannian manifold (M,g) defined as
follows:

d

—(g() = 25 D
where S is the Ricci tensor of type (0,2) in a
Riemannian manifold (M, g).

A Ricci soliton we mean a Riemannian manifold
(M, g) together with a smooth vector field V
(called the potential vector field) and a real scalar
A satisfying

1
ELVg +S+1g=0 1.2)
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where £, indicates Lie-derivative operator of g
along the smooth vector field V on M [3].

The Ricci soliton is said to be shrinking, steady
and expanding if 1 is negative, zero and positive
respectively. If the potential vector field V of the
Ricci soliton (g, V, A) is Killing, then the soliton is
trivial (Einstein) provided the dimension of M is
greater than 2.1t is clear that if V is conformal
then, the manifold is Einstein. Ricci solitons have
been investigated by several geometers such as
([1],16],[10],[15]). The so called Ricci soliton
becomes the almost Ricci soliton if A : M — R is
a C* function (called the soliton function).

In [13], Pigola et al. introduced the above notion
clearly which is a generalization of Ricci soliton.
Recently, the idea of almost Ricci soliton was
generalized by Gomes et al. [8] and named as u-
almost Ricci soliton. An p-almost Ricci soliton is a
complete Riemannian manifold (M,g) with a
smooth vector field V on M, a soliton function
A: M - R and a smooth function pu: M - R
satisfying the equation

%ng +S+2g=0 (1.3)

We denote the p-almost Ricei soliton by
(9,V,u,2). If the potential vector field V is
gradient of some C®function on M, then the
previous equation reduces to gradient p-almost
Ricci soliton.

Furthermore, if the soliton function A is constant,
1-almost Ricci soliton is a Ricci soliton. More
recently, Ghosh and Patra in [7] has studied pu-
almost Ricci solitons within the context of K-
contact metric manifolds. They got a few
fascinating results.

A Gray [9] revealed the idea of cyclic parallel Ricci
tensor and Ricci tensor of Codazzi type. Codazzi
type of Ricci tensor means that the Levi-Civita
connection V of such metric is a Yang-Mills
connection while keeping the metric of the
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manifold fixed. A Riemannian manifold (M, g) is
said to have cyclic parallel Ricci tensor if its Ricci
tensor field S of type (0,2) is non-zero and
satisfies the following condition

WY, 2)+ (WSZ, X))+ V)X, Y)=0 (1.4)

forany X ,Y, Z € y(M)
Again, a Riemannian manifold (M, g) is said to
have Ricci tensor of Codazzi type if
its Ricci tensor S of type (0,2)is non-zero and
satisfies the following condition
VxS, 2) = (WS (X, Z) (1.5)
for any X ,Y,Z € y(M). Ki et al.[11] proved that
Carten hypersurfaces are manifold with non-
parallel Ricci tensor satisfies cyclic parallel Ricci
tensor while Bourguigon [4] proved that the
interesting result that any metric with Codazzi
type of Ricci tensor on a compact orientable 4-
manifold with non-vanishing signature is
Einstein.

The organization of the current article is as
follows:

After  introduction, Section 2  contains
preliminaries on hyperbolic Kenmotsu manifolds.
In section3, we consider an p-almost Ricci
solitons on hyperbolic Kenmotsu manifolds. Here,
prove that the Ricci tensor is parallel along the
timelike vector field ¢ if and only if {(u) = 0. In
this section we have also shown that the soliton is
shrinking in a hyperbolic Kenmotsu manifold
when a soliton vector fieldV is point-wise
collinear with the timelike vector field ¢. In section
4, we study the existence of y-almost Ricci solitons
on hyperbolic Kenmotsu manifolds admitting
Codazzi type of Ricci tensor field. In section 5, we
obtain a results for u-almost Ricci solitons on
hyperbolic Kenmotsu manifolds admitting. cyclic
parallel Ricci tensor field.

1. Preliminaries

An odd dimensional smooth manifold M?"*! is
named to be an almost hyperbolic contact metric
manifold if it admits a timelike vector field ¢, a 1-
form 7, a fundamental tensor field ¢ of type (1,1)
and a semi-Riemannian metric g satisfying [14]:

P*(X) =X +n(X)¢ (2.1)
N =-1=¢@ =0 (2.2)
rank ¢ = 2n (2.3)
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neg =0 (24)
9(@X,0Y) = —g(X,Y) —n(X)n(Y) (2.5)
9(@X, V) + gX,0Y) =0 (2.6)
9, ) =nX) 2.7

for all X,Y € y(M?™*1). Then the structure
(¢,€,1m,9) on manifold M>™*' named as almost
hyperbolic contact metric structure.

If an almost hyperbolic contact metric manifold
M?7*+1 s fulfilled the following condition:
(Vx@)Y = g(@X,Y){ —n(¥V)pX (2.8)

then, the manifold M?"*! is called a hyperbolic
Kenmotsu manifold [2]. where V denotes the
Levi-Civita connection of the metric g.

From the antecedent equation it is clear that
Vx¢ ==X —n(X)¢ (2.9)

and
WxmY = —gX,Y) =nX)n¥) (2.10)

In a (2n + 1)-dimensional hyperbolic Kenmotsu
space form [12], we have

RX, V)¢ =n()X —n()Y (211)
R(X, 0 ==X —nX) (212)
REX)Y =gX,Y){—n()X (2.13)
S(X,¢) = 2nn(X) (2.14)
S, =-2n (2.15)
Q¢ =2n¢ (2.16)

where R,S and Q are the curvature tensor, the
Ricei tensor and the Ricci operator of M2™+
respectively.

In a hyperbolic Kenmotsu manifold we obtain
L&, Y) = =2{gX, V) +nXn(V)} (2.17)
forany X,Y € y(M?*"*1).

3. p-almost Ricci solitons on hyperbolic
Kenmotsu manifolds
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p-almost Ricci solitons on hyperbolic Kenmotsu manifolds

Let a hyperbolic Kenmotsu manifold M?2"*!
admits an u-almost Ricci soliton (g, ¢, u, A).
Then we have

%(ng)(x, V) +SX, V) +gX,Y)=0 (3.1

forany X ,Y € y(M?"t1).
Now, using (2.17) in equation (3.1) gives

SX,Y) = @—DgXY) +unXn() (3.2)

Putting Y = {in (3.2) and using (2.2), (2.14), we
get

(A+2n) =0 (3.3)
Since n(X) # 0, we get

1= -2n (3.4)

Hence, from (3.2) and (3.4) it follows that
SKY) = @+2n)gX,Y) +unXnk) (3.5)

forany X ,Y € y(M?").
Thus, we can state the following theorem:

Theorem 3.1. If a (2n + 1)-dimensional
hyperbolic Kenmotsu manifold M*™*' admits an
u-almost Ricci soliton (g, , u, A), then the soliton
is shrinking with = —=2.

In view of the equation (3.5), we can state the
following:

Corollary .. If a (2 + 1)-dimensional
hyperbolic Kenmotsu manifold *** admits an -
almost Ricci soliton (,,,), then the manifold
becomes an -Einstein.

Next we prove the following theorem:

Theorem ..If a (2 + 1)-dimensional
hyperbolic Kenmotsu manifold 2** admits an -
almost Ricci soliton (,,,), then the Ricci tensor
field of type (0,2) is parallel along the timelike
vector field ifand only if ) = o.

Proof: Taking covariant differentiation of (3.5)
with respect to we get

00)=0{00+0}+

21). Sci. Eng., 2022,2(2)

{00 +003 (36)
In the view of the equation (2.10) we have
0G)=0{00+ ()} -
{0+ 00C)+2000}
37)

Setting = in the above equation (3.7), we get
(7:S)(X, V) = ¢ mCOn(¥) + g(X,Y)} (3.8)

Suppose the Ricci tensor field S of type (0,2) is
parallel along ¢ , then from (3.8) we have

WX +gX,V)}=0 3.9

forany X,Y € y(M?"1).
It follows that {(p) = 0.

Conversely, we assume that {(n) = 0

Then from (3.8), it follows that (7;S)(X,Y) =0
for any X,Y € y(M?"*1). This shows that the
Ricci tensor field S of type (0,2) is parallel along {.
This finishes the proof.

Next we prove the following theorem:

Theorem 3.4.If a (2n + 1)-dimensional
hyperbolic Kenmotsu manifold M*™** admits an
u-almost Ricci soliton (g, {, u, A) and the potential
vector field V is point-wise collinear with the
timelike vector field {, then the vector field V is a
constant multiple of (. Furthermore, the soliton
is shrinking with A = —2n.

Proof: Let us consider the soliton vector field V
is point-wise collinear with the timelike vector
field 7, then there exists a smooth function h such
that V = hi.

Then from (1.3) we derive

w{g(Vxh(,Y) + g(X, Vyh)} + 25(X,Y) + 22g(X,Y)
=0 (3.10)

Utilizing the equation (2.9) in above equation
(3.10), we get

w(Leg) X, Y) + u{X(WnY) + Y (h)nX)} +

2S(X,Y) +22g(X,Y) =0 (3.10)
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With the help of the equation (2.17), we get
—2uh{g(X,Y) + nCOn(M)} +u X(Wn(¥) +

WY (X)) + 25X, V) + 21g(X,Y) =0 (3.11)

Replacing Y by ¢ in the above equation (3.11) and

using the equations (2.2), (2.7) and (2.14) yields
—uX(h) +{ud(h) +4n+24nX) =0 (3.12)

Again replacing X by ¢ in the above equation
(3.12) and using (2.7) we get

ul(h) = —2n— 2 (3.13)
Substituting the value of pg(h) in the equation

(3.12) we get

2n+2)

Applying exterior derivative on both sides of the
equation (3.14) and using the Poincare lemma
d? =0, we get

CLREDI. d{zn ”} n=0 (3.15)

Taking wedge product of the above equation
(3.15) with 17 , we have

{2n+/1

}n Adn =0 (3.16)

Since nAdn=#0, in a hyperbolic Kenmotsu
manifold, we infer

A=—2n (3.17)
Now substituting the value of A in the equation
(3.14) we have d(h)=0= h = constant on
M2n+1.

Consequently, the equation (3.11) reduces to
SAXY) = (uh+2n)g(X,Y) + phn(X)n(¥) (3.18)

Comparing it with the equation (3.5), we get
h = 1. Again from the equation (3.17), A = —2n >
0 for n > 0. Thus, the soliton is shrinking.

This finishes the proof.

4. p-almost Ricci solitons on hyperbolic
Kenmotsu manifolds with Codazzi type of
Ricci tensor field

Das and Halder

First, we suppose that the hyperbolic Kenmotsu
manifolds M?"*! admits an p-almost Ricci
solitons satisfy the condition (1.5), i.e., the Ricci
tensor field S is of Codazzi type.
Then from (1.5) we have
VxS, 2) - (yHX,Z) =0 (4.1)
forany X ,Y € y(M?"*1).
Therefore, taking covariant differentiation of
(3.5) with respect to Z we obtain

V)X, Y) = Z@n(Xn() + g(X,V)} +
uinX @Y +n(M©VmX}  (4.2)

In the view of the equation (2.10) we infer

V)X, Y) = Z@{nXn¥) + gX, )} —
uin(X)g(Z,Y) +n(V)g(Z, X) + 2n(Xn(¥In(2)}
4.3)

Utilizing (4.3) in the equation (4.1) entails that
XWm@nX) + g, )} = YWw{hXn2) +

9X, 2} —ufn(VgX,2) + n(X)g(¥,2) }
=0 (4.4)

Putting Z = { in the above equation (4.4), we lead

unXm(¥) =0 (4.5)
forany X ,Y € y(M?"*1).

It follows thatuy=0. Hence a hyperbolic
Kenmotsu manifold with Codazzi type of Ricci
tensor does not admit a proper p-almost Ricci
soliton. Thus we conclude the following:

Theorem 4.1. A (2n + 1)-dimensional
hyperbolic Kenmotsu manifold M?*"*! with
Codazzi type of Ricci tensor field does not admit
a proper u-almost Ricci soliton (g, {, u, A)-

Now for u = 0, the equation (3.5) reduces to
S(X,Y) = 2ng(X,Y) (4.6)
forany X ,Y € y(M?™*1).

Hence, the manifold reduces to an Einstein
manifold. Thus we state the following;:

J. Sci. Eng., 2022, 2(2) 22
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Corollary 4.2. If a (2n + 1)-dimensional
hyperbolic Kenmotsu manifold M?**' with
Codazzi type of Ricci tensor field admits an u-
almost Ricci soliton (g,{, u, 1), then the manifold
becomes an Einstein manifold.

5. p-almost Ricci solitons on hyperbolic
Kenmotsu manifolds with cyclic parallel
Ricci tensor field

Here, we suppose that the hyperbolic Kenmotsu
manifolds M?"**! admits an p-almost Ricci
solitons satisfying the condition (1.4), i.e., the
Ricci tensor field S is cyclic parallel.

Then from (1.4) we have

WY, 2)+ (WSZ, X))+ V)X Y)=0 (51)

forany X ,Y, Z € y(M).
Utilizing (4.3) in the above equation (5.1), and
setting Z = ¢ and then maintaining the same
procedure as in the proof of Theorem 4.1, we can
easily obtain

W + 2y + g(X,v)) =0 (5.2)
forany X,Y € y(M?"1).
It follows that {(u) = —2p = Du = 2ul. Hence the
gradient of the smooth function pu is point-wise

collinear with the timelike vector field {. Thus we
conclude the following;:

Theorem 5.1. If a (2n + 1)-dimensional
hyperbolic Kenmotsu manifold M?"*' with
parallel Ricci tensor field admits an u-almost
Ricci soliton (g,{,u, 1), then the gradient of the
smooth function u is point-wise collinear with
the timelike vector field {.
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